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I. INTRODUCTION

The large accumulation of data on the low energy spectra of

many nuclei has made it possible to study systematically and in detail

the variation from nucleus to nucleus of various nuclear properties0

such as level energies, moments, transition rates and reaction rates.

In many cases it has been possible to identify in the low-energy spec-

trum states which seem to correspond to the motion of a single particle

or quasi-particle in an effective field and states corresponding to

collective vibrations or rotation of the nucleus. Moreover, there is

now accumulating more information determining in which regions nuclei

are spherical or deformed and which cases seem to corretpond to the

transformation between a spherical and a deformed equilibrium shape.

It has thus been useful to utilize a nuclear model from which

the nuclear properties may be computed in detail for many nuclei over a

large region of the periodic table. Such a model was that first studied

in some detail by Belyaev1 in which particles interact with a particular.

ly simple two body force. The force is represented by two simple components,

the pairing force suggested by work in superconductivity and first dis-

cussed in relation to the nuclear problem by Bohr, Mottelson and Pines2 '

and a long range part represented by a quadrupole force as suggested by

the work of Elliot 3. Belyaev showed that the model contained the main

qualitative features of nuclear spectra, including in particular the

transition from the regions of spherical nuclei with their quadrupole

vibrational spectra to the regions of deformed nuclei with their associ-

ated vibrational and rotational modes of excitatior.
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The first quantitative comparison of the model with experimental

data was made by the authors 5 in a study of nuclei for which

either the neutrons or protons completely fill a major shell. (This work

will be referred to hereafter as Ref. I). There have also been a

number of calculations applying this model to deformed nuclei, with the

result that one now believes that an important part of nuclear structure

7effects can be accounted for by these simple interactions . It is the

purpose of the present work to carry out a detailed study of nuclei from

Ni to Pb in order to try to learn to what extent methods essentially the

same as those used in Ref. I. can be applied to the other spherical nuclei.

Also some phenomena such as 0 decay, not treated previously owing to the

restriction there to single closed shell nuclei, will be included.

The main assumption of the work is that the low lying states

of spherical nuclei can be treated in terms of two basic excitations,

quasi-particles and phonons. For the most part these are treated as

separate modes of motion. For even-even nuclei the lowest excitations

are the phonons, and only these are treated in detail. For the odd-mass

nuclei both of these modes of excitation are low in energy and must be

considered, as well as their interactions. We trace the states of quasi-

particles and phonons to see to what extent systematic trends of the

experimental data can be followed.

While in Ref. I the shell model levels (single particle levels)

were chosen separately in each of the nuclear regions considered, i.e.

the Pb region, the Sn region etc., in the present work, these levels must

be chosen once for all the nuclei in a large region of the isotope table

since all these nuclei are considered together. To obtain agreement with
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experimental results it is found necessary to include a smooth variation

of the single particle level spacings with A, and to use different

level spacings for the neutrons and the protons. Because the neutrons

and protons are filling different levels, the pairing force, which is

effective only for shell model pairs coupled to zero angular momentum,

is assumed to exist only for protons and neutrons separately and is

described by two strength parameters G and GN . Mhe quadrupole force

is effective for protons, neutrons, and for proton-neutron pairs as well

and so is described by three coupling constants XP, 7k, -P"

With the chosen set of levels and coupling constants, the inter-

action is treated in the following manner. First, the pairing Hamiltonian

is approximately diagonalized by the use of the quasi-particle transforma-

tion for neutrons and protons separately. The quadrupole force is then

described as an interaction between the proton and neutron quasi-particles.

The effect of this force is determined by the quasi-particle random phase

approximation, through which the phonons are introduced. Finally, for

certain nuclear properties the effects of an additional short range inter-

action are derived by the use of perturbation theory applied to the pair-

ing plus quadrupole wave functions.

In Chapter II the quasi-particle treasformation is described

and results to be used here are derived. The proton-neutron short range

force is also discussed. The quasi-particle random phase approximation

as applied to the quadrupole force is then outlined, and the results

compared with those of adiabatic perturbation theory. The results are

compared with experimental energy level systematics in Chapter III. In

Chapter IV, the systematic binding energy data is discussed. In Chapter

V and VI the static electromagnetic moments of the ground state and some



excited states of nuclei arc considered. Chapter VII treats the

electromagnetic transition rates and Chapter VIII the systematic data

concerning beta decay.

II. DESCRIPTION OF HAMILTONIAN AND WAVE FUNCTIONS

A. The Hamiltonian

Starting from a shell model with a two-body interaction, we

derive various single-particle and collective properties and compare the

results with systematic data. Only the particles outside of the closed

shells are treated explicitly, the particles in the core being neglected

except in so far as they give rise to the single particle potential and

renormalize certain properties of the nuclear particles, such as the

charge.

The residual interaction consists of two components, a short

range part, which leads to an approximate seniority spectrum, plus a

quadrupole interaction, which is mainly associated with the collective

states. The pairing force used to approximate the short range component

in this work has the property that for two particles in a J-level only

the state of zero angular momentum (seniority zero) is affected. In

the regions in iich detailed comparison with experiments are attempted

the neutrons and protons are for the most part being placed in different

shell model levels. This tends to make a force which acts most strongly

in states with all particles coupled two-by-two to spin zero less effective

between neutrons and protons than between likeparticles. For this reason,
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we use a pairing force only between neutrons and between protons

separately, and neglect the neutron-proton short-range interaction

(except the spherical field producing part, as is described in the next

section).

The notation will be the same as in Ref. 1, with b (bf )
jm jili

the creation (destruction) operators for shell model particles of type (p,n)g,

angular momentum j and z-component m, with the time-reversed phases

for the states I j - m> b t 10) Thus the Hamiltonian is

6ji Y,6~t :q2 -1

j Yr -, j,( ) "

'..n which Q is the quadrupole operator

""' " """¶•, IlY; . 1\,i, . (2)
/,4.. . .',.

* the £ are the single particle energies, and Gp, Gn, XP 7Xn' and

Snp are force constants which must be determined. The choice of these

constants is limited by the calculation in the single closed shell regions.

From Ref. 1 one knows approximate values for Gn, GpX,., and (p' however,

one does not know the magnitude of X np from that work.

The only neutron-proton interaction which occurs explicitly in this

Hamiltonian is via the quadrupole force. With this assumption the energy

spectrum is extremely simple. The particle-like states are separated
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from the ground state by the smaller of the proton or neutron gap, the

one phonon vibrational state occurs in the gap (except in the few cases,

when there is a low-lying 0* first excited state), and the vibrational

states with more than one phonon lie either in the gap or among the

excited particle states. It is the purpose of this work to study the

solutions to this system and to try to learn to what extent systematic.

nuclear, data can be fit by such a model.

"B. The Pairing Solutions

The first two terms of the Hamiltonian (i) constitute the pairing

Hamiltonian, which is used to represent the short range force because of

the ease with which fairly accurate solutions can be found regardless

of the number of particles involved. Since there exist rather complete

descriptions of the method of solution based onthe work in the theory

o.9f superconductivity and of the accuracy of the results (including the
effect of spurious states) for nuclear problems in the regions studied

- *in the present work9 , we limit ourselves to a brief discussion of the

procedure in order to define the various quantities and to try to make

the paper more self-contained. Since the neutron-proton pairing interaction

is neglected, the procedure which is described below is applied to neutrons

and protons separately and the index • is dropped.

First, a Bogolyubov-Valatin canonical transformation is carried

out to introduce the "quasi-pa7ticle" creation and annihilation
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operators

t

.j - Uj bj,, + V(3)

2 2.

in which is the probability of occupation (nonoccupation)of

the j-level. Since the seniority coupling scheme is specified, one needs

to know only these quantities to specify the wave functions. The chemical

potentials, , introduced as Langrangian multipliers to adjust the

average number of protons and neutrons to correspond to the isotope

"under consideration serve as the Fermi energies of the proton and neutron

systems. The coefficients U and V are determined by the solution

of the equations

,~(•)
_J

where n is the particle number, and the quantities

Ej = Cce-A)2 +) , (5)
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are the quasi-particle energies. These are the energies of the elementary

excitations from the ground state, which in turn depend upon .the.quantity..,,

defined by

which is approximately one-half: ithegap in the: even.,prot6n or neutron

spectrum. Having selected ) and a to .'satisfy Eq'.•.(4) ,for .'protons and

neutrons, one can obtain the 'OCcupaion 0coefficients, from the- relation- .

ships

Ej (C j./-

The Hamiltonian (1) can b; teaprxima-tely written a

E' F', +W -" '

a'O ., . a a Y

The approximation made in Eq. (8) is the dropping of terms in the scatter-

ing of quasi-particles due to the pairing force and the neglect of the change

of the quantities X and 4 in the excited states. Although these latter

effects are sometimes large, especially for the calculation of the states of

odd-mass nuclei in the deformed region (e.g. see V.G. Soloviev7), in the region



9

in which we calculate they are generally small. In the quasi-

particle representation a single pa.rticle operator of rank L,
O/J.. = ,'llflJoy> bj't, bjrm. . has the form

SLAI

LA LA 44 o -

"with the upper (lower) sign holding for an operator which does not, (does)

change sign upon tiz, reversal. For convenience, two operators have been

"introduced in Eq. (9), the double quasi-particle creation operator,

= E :1j [(- (10)

representing two quasi-particle creation operators vector coupled to-form a
+ A

tensor of rank L (with a phase (ýi) ), and

LM t

a tensor of rank L corresponding to the transition of a quasi-particle from

"state j to state' J1. The explicit forms for these operators .interms

of the quasi-particles'with time reversed phases are given in Appendix I,

"Eqs. (Al) and' (A2). The two quasi-particles which are coupled to form' A s

are always either both protons or both neutrons, and the notation [p ]IM

is used when we wish to consider a proton and a neutron quasi-particle

vector coupled.
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The eigenfunctions corresponding to the pairing part of the Hamiltonian

are the quasi-particle states. For an even-even nucleus the (unnormalized)

LMt , t it JM e
states are Ai ,' A, 1  '., rA.1 A,•IJ . to* tc.,

00with energies E0  E + E+ +'E2+ E , etc.i respective-
o .o +~ + 2  + 'E 2 ý ":3, 4

ly, the quasi-particle vacuum, the two quasi-particle states, the four quasi,-

particle states, etc. In each sta'te there are an even number of r proton

and neutron quasi-particles. The ground state is the quasi-particle

vacuum defined by

0 (12)

For an odd-mass nucleus the eigenfunctions are the one quasi-particle states

t 0 T Li t M
d.1M Yll the three quasi-particle states [eil A2 3 ] j ; ,

etc., with energies EO + E1  E + E1 + E2 + E3 , etc., In each odd proton

(neutron) state there are an odd number of proton (neutron) quari-particles

and an even number of the other type. The states of an odd-odd nucleus

consist of odd numbers of both neutron and proton quasi-particles with an

energy spectrum E 0 + En + EP etc.
0 1 2'

Since the gap separates the zero quasi-particle states from the two

quasi-particle states, the low-lying states for the yevn-even nuclei are

"the zero and two quasi-particle states, and for odd-odd nuclei are the coupled

one proton and one neutron quasi-particles. Therefore, in so far as the

quadrupole terms can be neglected, 'the low lying states of odd-mass nuclei

' have the simplicity of a .single particle in several J-levels, and the low-

lying states of even-even (except for the ground state) and odd-odd nuclei

appear as two-particle spectra in those same levels regardless of the number



of nucleons involved. This enables one to systematically compare the theor-

etical calculations to the experimental spectroscopic information with little

difficulty. In fact, there is now good experimental evidence that there is

this smooth and gradual variation of the particle-like states as one proceeds

through the major shells, in agreement with the basic assumptions of this

picture. In the next section, the effects of the quadrupole interaction are

discussed, but first the neutron-proton short range force will be considered.

The neutron-proton short range force is expected to play an increasingly

larger role as one treats lighter mass nuclei. For the investigation of the

role of this force in nuclear structure, the nuclei with one particle added

to or removed from one closed shell and various numbers of nucleons outside

of the other closed shell seem to give the most direct information. Silver-

berg, who has carried out extensive calculations for these isotopes, concludes

that he must include a neutron-proton short range force to account for the

level systematics of these nuclei; and he finds that he can successfully

account for the general features of these systematics by calculating the

radial overlap integrals between the neutron and proton 1 0 wave functions.

Let us consider the case of one proton outside of the proton closed

shell and a & -function interaction between the proton and various numbers

of neutrons

t t
V : <••'I• • -• l•>p'b• b•• . (13)

A spin dependent part gives no contribution for the S -function force.

Evaluating the energy shift due to this force in perturbation theory for

the states with one proton and an even number of neutrons

to (0) jt, (14)
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one finds for the energy shifts of these states

"e. n (15)

The R ('i) are the radial wave functions. Since the energy shifts

E7A j of the different proton levels are unequal, these can be inter-

preted as additional shifts in the single-particle levels as a function of

A. However, the interpretation is complicated by the fact that there are

other phenomena which can cause effective level shifts. E.g., the particle

interacts with the phonon (see next section), and the level spacings depend

upon the parameters CE , G, and " . Moreover, the addition of other

long-range forces to the quadrupole force, to change the composition of the

phonon, can alter the energy levels of the odd mass isotopes without changing

31
the systematics of the collective states . In Chapter III systematic

studies with these energy shifts AE are discussed.

In a similar manner one can evaluate the interaction, Eq. (13),
in pure quasi-particle states. Introducing the quasi-prticle transformas-

tion (3), one finds that onj" the "P0 part-oqf the forIe Ie contributes and that,

e.g. in proton one quasi-.part c:e' astates.,,he energy shifts of the

quasi-particle states AE-' are

(Ij 2ý-Vip ) 6Ej (15')

For the lowest quasi-particle states U 2 V so these effects would tend to

be reduced, and one would expect the maximum energy shifts at the single

closed shell plus one nuclei.

Of course, there are also contributions which arise from the admixture
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of higher quasi-particle states. Because of the low-lying phonon states

which can be accounted for by the quadrupole interaction, one can expect

* that the quadrupole part of the neutron-proton force might play an

especially important role. This part is included in our Hamiltonian, as

is described in the next section.

C. The Long Range Force

1. Even-Even Nuclei, QRPA Approximation

The general experimental eystematics 4 for the even-even nuclei in

the regions which are treated in this work are that the first excited

state is almost always a single 2+ state (at energy w • above the

ground state) with a fast reduced E2 transition to the ground state.

The next excited states, which are 2+, 4+, and 0+ states, are at roughly

2A w excitation energy with a reduced E2 transition rate to the first

2+ state of the same order as that of the latter to the ground state, while

the reduced Ml transitions from the second 2+ •to the.first 2+ state

and the reduced E2 crossover transition to the ground state is much

weaker. Although these systematics are not so regular or so striking as

"the analogous ones in the rotational region, this data strongly suggests

that the lowest states of the even-even nuclei in this region are not

properly described as two quasi-particle or other simple particle states

but more nearly as quadrupole vibrational states.

Starting from the pairing force with its approximate quasi-particle

solut-ons, one can see that the simplest additional force which gives
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rise to such adiabatic motions is the quadrupole interaction. Therefore,

for the long range force component we use the quadrupole force. Whereas

.. this force is important for particles in different orbits it cannot

be assumed to be effective only among proton pairs and neutron pairs as

is the pairing force, but must also be effective as a proton-neutron

interaction. There are then three coupling strength parameters Xh

S , and X 1 , and the Hamiltonian Eq. (8) including the effect

of pairing and quadrupole forces may be written out in terms of the

quasi-particle operators as

Ho -0 P(t0Oo+f"n)+ZEjdC-+ n

A,j"

(16)

where the subacript p, n refers to proton, neutron quasi-particle
A

operators and energies respectively, and Q is the proton or neutron

quadrupole moment operator:
aI

((( +!
7P(17)
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and

(18)

The lowest excited states of an even-even nucleus are the two quasi,

particle states where both are protons or neutrons. (A state of one neutron

and one proton quasi-particle corresponds to an odd-odd nucleus). The quad-

rupole force has its most pronounced effect on the states in which the proton

or neutron quasi-particle pair is coupled to 2+. The approximation of linear-

ized equation of motion in terms of quasi-particle pairs called the quasi-

particle random phase approximation, referred to hereafter as QRPA, is used

to treat this force*. The result of this approximation is that only the

2+ states among the many two quasi-particle states are affected. In the

absence of X n , the neutron and proton states remain independent and two

2+ states are lowered into the energy gap. Cne will be a linear combination

of neutron 2+ states and the other of proton 2+ states. In the presence of

a large 4 a single 2+ level, which is a linear combination of both

proton and neutron 2+ states, is lowered into the energy gap. In the QRPA

approximation, that 2+ level is the first excited state of a quadrupole

harmonic oscillator in the sense that it is followed by an 0+ 2+ 4+ triplet

at twice the energy, and by the other well known levels at integral multiples

of the energy w w of the lowest 2+ states. The previous calculations

for single closed shell nuclei (Ref. 1) for which only one kind of particles

is free to utilize the two body force shows that A z . The experi-

mental observation of only one low 2+ (and not a doublet) shows furthermore

that must at least be a sizable fraction of X " d a.m .
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For even nuclei the QRPA approximation consists in dropping the first

sum in Eq. (17). The justification for this is that the effect of this term

is spread over many pair states of various angular momenta, and its matrix

elements are small since they are proportional to the number of quasi-particles

in the state. The second term of Eq. (17),' the one which is retained, has

its effect concentrated entirely on the 2+ pairs, and its matrix element is

proportional to the number of participating particles rather than quasi-

particles. 'Ihe other approximations necessary for the solution of Eq. (16)

all involve dropping terms of single quasi-particle type spread over many

angular momenta and so are consistent with the central approximation above.

We may approximate the independent quasi-particle Hamiltonian as:

IMt. JIM

2:E•~ J, J ~ LJM(19)

since both sides of Eq. (19) have approximately the same commutator with

all-of the .A and At. In Eq. (19)

i j2. Ej(+ Ejý. E(20)

and t"1 . is the' vector coupling of j1  and J2 quasi-particle creation

operators to a total angular momentum of J, M. defined by Eq. (AI).

The'At have the commutation relation,

AA,.t]-g~, f.,, c, sj'j., E )X#

+ single-quasi-particle scattering terms spread over many

angular momenta. (21)

With the omission of the last term in Eq. (21), Eq. (19) describes a set of

independent harmonic oscillators.
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With the use of the Wigner-Eckart theorem on Eq. (18), the retained termi

of Eq. (17), may be written in terms of the "A" operators,

(A A
(22)

where

Z ., jal 1 ' (1,v~•)
*- (23)

In this approximation, the quadrupole terms of Eq. (16) produce a

harmonic coupling among the otherwise independent harmonic oscillators

described by the first two terms. The problem is simply to find the normal
jM-

modes. The modes described by A,.2  , Ja2+ are already normal and retain

the energies .(jajL) . Because of the commutation relation Eq. (21) only

only the J = 2+ modes are coupled. Since the coupling terms are themselves

harmonic, the Hamiltonian Eq. (16) expressed in terms of its normal mode

creation operators will be a set of uncoupled harmonic oscillators. Call-
+

ing the creation operators for these oscillators O and their energies w,

and letting . and E be the ground state and ground state energy of the

Hamiltonian such that B o 0 one has:

t 1t
(H-E"o) BO Yo CH, B JYP. W B W Y . (24)

Since [a A" 9 1] 0 the A do form normal modes.

For J 2, one also wishes to consider higher excitations of the lowest

mode oscillator, hereafter referred to as the phonon, which requires

UH, Bt J - ,
(25)
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as an operator equation. Let us define the commutators (which are c numbers

in our approximation)

Bt

(26b)

where f stands for a proton or neutron pair Ji j Jfr Jj J

(with the two angular momenta coupled to 2+). Taking the commutator of Eq.t
(25) with Af=p a,4 Ag 1, one obtains with the use of (16) (17),

(19) and (21):

(27a)

(27b)

t
and two similar equations may be obtained using A• n amh Ag..o

One may combine Eqs. 27a, 27b to obtain

(an the +two (siil're qain (27c)

and the two similar equations to obtain

X,q S., O PI ( i,•' + -A, C ,) + 061116(1- A) 1(" (Aý •,Yk ) 0 ,•••=,
S~(27d)
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where

(28)

and a similar equation defines Sn. Since Eqs. (27) are linear and homogeneous in

the sums on r + s they will have solutions only for ceitain values of w,

namely those satisfying the relation:

(29)

The nature of the solutions w satisfying Eq. (29) are easily seen. If

=0 we get solutions when either = or 1n Ei.

Each of these equations has as the number of solutions the number of proton

(neutron) pair states coupling to 2+. For YP> 0 , X > 0 the lowest

proton w will lie below &p) minimu and the lowest neutron w below 6n)

minimum. The larger the -4 the lower the state is (until for sufficiently

* 2large %, w passes zero and becomes negative corresponding to a permanent deforma-

tion). There may thus be two low energy 2+ states in this case. The effect

on these states of changing Xnj from zero is also easily seen. The product

(Of,• Y-,- 5ý - -1) must now be positive. Thus, the lower of the

two 0 levels must be lowered farther making each factor above positive

while the higher energy is raised making each factor negative. For suffici-

ently large there will be essentially only one w left in the energy
!a

gap. In particular for , X - X Eq. (29) becomes

x n + .1. (30)
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For Eq. (30) to be satisfied it is clear that the lowest w is below the

lowest (•(• ) while the other w's are spaced with one w between each adjacent

pair of energies 5( ). The spectrum in this case is similar to that of the

single closed shell case.

The reduced electromagnetic transition rate from the lowest 2+ to O+ may

easily be computed. We have:

A 2.

12 t (Ji(b) + Ac,q)e e + ~ Q W ()+A,CO )et, fIf

£
where e are the total effective charge for protons and neutrons

respectively. From Eq. (26) we see that

t = 2 I ;E(A~,(.)At 4.(TA d)~(2BW S (32)

so the normalization condition on B requires

fw

[B I BJ (33

Aside from this overall normalization Eq. (27a-d) shows that for positive

(34 ab)

Esý I-y o1, o -LO(34Cd

-Y [SP( 1-y- so , 18K)t
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Thus we have

For the numerical results, the effective charge for protons and neutrons

have been taken as 2e, and, e respectively. The majority of the computa-

tions were Oerformed with the parameters of quadrupole coupling all chosen

equal i.e. 7- * -- -n In that case the B(E2) value

takes the simpler form:

B(E2-) + (36)1 ef

2. Even-Even Nuclei the Adiabatic Limit

Condition(29) may be rewritten

%- IP - 0

In the adiabatic limit i.e. for any W such that

we•m ay(wt8)

we may write

/at (-/9
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where

(40a)

S~(40b)

In this limit Eq. (37) may be written:

I + X (41)

There are two values of w,2 which satisfy Eq. (41). Either one or both of

these roots may satisfy the inequality (38). In the first case only that

lowest root will be an approximate solution to the original relation Eq.

(29). In the latter case (which will hold only for relatively small

both roots are approximate solutions of Eq. (29).

It is easy to show that Eq. (41) is also the result of adiabatic per-

turbation theory. The quadrupole force is replaced by the interaction of each

particle with two quadrupole fields - a neutron and a proton field.. The

self-consistency conditions are applied that each field have the same quad-

rupole moment as the corresponding particles. The inertial parameters are

calculated as in Ref. I. The resulting collective Hamiltonian written in

terms of the collective parameters i is derived in the same fashion as

in Ref. I.

with

(43a)

(43b)
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It is then easy to show that the normal mode energies of Eq. (42) are

just given by Eq. (41).

In the special case e- =7 -- 9. the adiabatic limit

to Eq. (29) takes the particularly simple form:

(44)

Eq. (44) is also the result of an adiabatic perturbation theory calculation,

In this case a single quadrupole field is introduced which acts with equal

strength, given by the parameter X, , on protons and neutrons. A single

self consistency condition is applied that the field have the same quadrupole

moment as that of all the neutrons and protons taken together. The resulting

collective Hamiltonian describes harmonic vibrations with a frequency given

in the adiabatic limit by Eq. (44).

The adiabatic limit to the B(E2) value Eq. (35) is also obtained

by adiabatic perturbation theory, with the assumption that the lowest 2+

state of Eq. (42) contain the entire quadrupole matrix element with the

ground state. Thus in the adiabatic limit QRPA and the harmonic oscillating

quadrupole field model are identical. For weaker quadrupole coupling, the

QRPA has the advantage of going to the correct limit while in the oscillator

model, the vibration is introduced as an extra degree of freedom which persists

to zero coupling.

It should be emphasized that the QRPA requires a large effective degeneracy

and a domination of pairing effects. If A/G is not sufficiently large, the

terms can be as important as the At terms and, for example, the ground

state can be lowered in energy more than the 2+ state by the P(2) force1.
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3. Odd-Mass Nuclei

In odd-mass nuclei, the low states (in the absence of quadrupole

coupling) are the states of one quasi-particle. With quadrupole coupling

there will be in addition some number of phonons. Considering only the

degrees of freedom associated with the phonons and the quasi-particle we

may obtain the approximate Hamiltonian for the odd-mass system by simply

adding to the phonon Hamiltonian phonon B (which comes1[ t
from Eq. 24), the energy of the quasi-particle given by7 E( t 't

and the interaction between the quasi-particle and the phonons. The w is

the phonon energy i.e. the energy of the lowest oscillator. The phonon

operators B and the quasi particle operators a, 0 are treated as independ-w

ent variables i.e. the equality [B , d,] f=o is assumed. This is

justified by the fact that a phonon contains only a small amplitude for the

presence of any particular quasi-particle. The interaction referred to

above, betweetn the quasi-particle and the phonon, arises from terms in the

quadrupole part of the original Hamiltonian obtained frim the first sum of

Eq. (17). Specifically, from the term ^Q the cross term is retained

in which one of the Q is approximated by Eq. (22), and the other retains

the scattering term j•,i (UU.,-!Ve)(dA , +P,:') . Although

this term is dropped for e.en-even nuclei, for odd-mass nuclei it must be

retained since it can scatter the odd quasi-particle causing energy shifts

comparable to the original single particle separations. This interaction

term may be written in terms of 'R and At of Eqs. (10 - 11), for a proton

quasi-particle as

A' J
f ll Y IIl6 (uiv uj,-vj ,) .,

- • . ,•(45).
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and a similar expression occurs for a neutron quasi-particle. By the use

of the inverse transformation to Eq. (32),

A1 t

the interaction term Eq. (45) may be written in terms of BW and B .

If only the phonon and odd-quasi-particle degrees of freedom are considered

the odd-proton Hamiltonian may be written

H., "V • E,,(.,.,r,, +uB~ Nv, P.),•- <Wl•'•: /4 •

#PROTO O'U t ttA
4-4

(47)

In writing Eq. (47) we have included for the quadrupole interaction

part, but not all, of the contributions from the three or more quasi-particle

states. We know that in some cases the effects of the P2 force on the quasi-

particle states will not be properly described in this manner; e.g., in the

. calculation of Ref. I. the low-lying 5/2- state, which is associated

mainly with the seniority three state of the (f 7 / 2 )3  configuration, is

predicted by an exact solution of the pairing plus quadrupole interactions,

while this state would remain high in energy if one used the Hamiltonian

(47). Although the phonon-quasi-particle interaction does not always re-

produce accurately the quadrupole effects, in the regions included in this

work the phonon states are much lower in energy than the two and more
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quasi-particle states (in the even-even nuclei) whenever the quadrupole

effects are large, so one can expect that the Hamiltonian (47) will include

the largest quadrupole effects for the states arising from the one quasi-

particle states in the absence of a quadrupole interaction. However, for

the states which arise from the seniority three states, e.g., the low-lying

states of spin J I for pure J configurations such as in the V5 1

case, one would not expect that the interaction will properly treat the

effect of the three quasi-particle states.

This Hamiltonian Eq. (47) which is in the form of an intermediate
14

coupling between quasi-particles and phonons is diagonalized including the

quasi-particle states together with all admixed states containing up to

two phonons. The matrix elements for this calculation aside from the U, V

14
factor and the r, a, factor are just those given by Chaudhury. The no-phonon

and one-phonon matrix elements are
(V.• t1.0  j'<i).> _ C'S'/4,,,7r.);'<JlIJ> C i,, (-) (UViU,' lj Vi (48)

As the two phonon states are weakly admixed in low states, the fact that

[B B~ tI T TO may not describe them very well does niot introduce much error*

The one-phonon to two-phonon elements are

<(Bdj)'Tl HOOD, I [C(Btej 8 .• )1G > - - (S/2"-')2- <ilJ I.,."J

. ,) f ,)( -J , W (2.--,Ji' (49)

The effective coupling constant X is

-* r~at xi,-spijL sit
(80) i[SR(,- i /. I - . )'a i z Co,, )+ C j '"

(50)
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The equations for an odd neutron nucleus are the same type. The diagonal..

ization of Eq. (47) was performed on an electronic computor and the wave

functions and energies of all levels up to 1 Mev and higher in some cases

were retained. The results of this diagonalization are presented in the

following section, together with the results on energy systematics for

even nuclei and a few comments on odd-odd nuclei.

III. ENEPGY LEVEL SYSTEMATICS

Since in the systematic studies of even-even, odd-odd, and odd-mass

nuclei for the spherical region one is generally concerned with quite

different, aspects of nuclear structure, we shall treat these systems

separately. For the even-even nuclei the main energy level systematics

concern the pobitions of the vibrational levels, while for the odd-mass

nuclei one has information both about the positions of the quasi-particle

states and the states of quasi-particles and phonons, and these states are

often strongly admixed. For the odd-odd nuclei the experimental data is not

so extensive, and seems mainly to give information about the states of

proton and neutron quasi-particles.

A. The Parameters and Description of Method of Calculation

1. The Interaction Strength Parameters

The parameters which enter into the determination of the energy

levels, and the wave functions which are used subsequently to calculate the

other properties, are the two pairing force strength parameters, G
P

and Gn, the three long range force parameters, Xn' ns pJ, and Xnp'

and the single-particle energy level parameters E- . A fourth

parameter g, defined in Eq. (13) is used for studies to try to determine
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the, but does not actually enter into any part of the calcula-

tion directly.

The most accurate information for the determination of the strength

parameters of the pairing force comes from the single closed shell data.

As was discussed in Ref. I, the main experimental information which goes

into the choice of these parameters is the even-odd mass differences, the

gap, and the position of certain states of high angular momentum and odd

parity in even-even nuclei. However, to the extent that the calculated

values of these quantities depends upon the details of the single-particle

spacing there is some uncertainty in the choice of the best value of these

parameters even in the single closed shell regions. We estimate that the

overall accuracy is approximately 20% for these isotopes.

It is surprising how little additional direct information on these

pairing force parameters can be extrauted from the remaining isotopes, which

constitute the great majority of the nuclei included in this work. First

of all, there are not many of these isotopes in which one can clearly identify

the lowest excited quasi-particle states because the multiple phonon states

are always in the gap or mixed in with the lowest-lying two quasi-particle

states. Secondly, because of the increa.3ed complexity in the spectrum as

soon as one leaves the single closed shell isotopes, it has been difficult

for many determinations of states of high spin and odd parity to be made in

even-even nuclei. Moreover, although there is some excellent mass data, the

theoretical uncertainties due to increased importance of the long range force

does not allow the even-odd mass data to be so clearly interpreted, as will

be pointed out in Cpt. IV.
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For this reason, we have simply used the force parameters which are

obtained from the single closed shell regions. Although there is some
7'

evidence for G to be slightly larger than Gn in the deformed region ,pn

and one might expect this to be the case because of the smaller iFermi

energy for protons than neutrons in heavy nuclei 1 5 we were unable to

justify the use of two different force parameters in our calculation. In

a rather extensive survey in various regions we were not able to find an

overall systematic improvement in the various states by using different

values. Thus we chose

C1,, G (51)

for each isotope, and allowed G to have a mass dependence of G -l/A,,

where A is the mass number.

As will be discussed more fully in Section B, there is nothing in

all of the systematics on the vibrational states which contradicts the

simpie picture of the vibration being formed by a force equivalent to the

interaction of the quadrupole moments of the particles with the quadrupole

moment of the entire nucleus; i.e. in all of these nuclei the spacing of

the vibrational levels is essentially that of a single quadrupole vibrator.

As can be seen from Eq. (4) and the discussion in the previous chapter,

this suggests that the three quadrupole force parameters are approximately

equal. Since there was nothing found in the calculations using different

force strengths to suggest that systematic improvements could be obtained

.by using different force strengths, we have made the choice that

P X " (52)
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for all of the calculations which are discussed hertý 'ter.

In the even-even nuclei we attempt to determine the best overall

values for this Y- parameter and its A dependence. However, for the

odd-mass nuclei we do not directly use this value, as will be explained

below.

2. The Single-Particle Parameters

The greatest uncertainty in the numerical results obtained in this

work comes from the uncertainty in the values of the single-particle energy

parameters, 6,j . From the single closed shell nuclei and from the

isotopes with one particle away from a single closed shell one can often

obtain rather good information about two or three levels, but usually one

must hope only to have reasonably good values for the levels which are

most important for a particular isotope. However, because of the large

changes in the mass numbers even in one region which are involved in these

calculations, this is not always very easy to accomplish in practice.

The most important aspect of this difficulty seems to be effective

changes which are produced by the neutron-proton short range force. In arw

calculation with a phenomonoligical residual force, the simplest correction

which one can attempt to make, to try to take into account the parts of the

interaction which have been neglected, is that of altering the effective

potential for the particles. In doing this one effectively takes into

account the P (angular independent) part of the interaction. We have done this

in a phenomenonological manner in the present work in a few cases where there

seemed to be clear evidence that this is necessary.
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It should be pointed out that although this adds a certain amount of

arbitrariness to the numerical results, such a device cannot alter the

essential picture which results from the coupling schemes which are

employed. When the coupling scheme breaks down, low-lying states of character

different from those which we can obtain appear. Also, the limitations

imposed by the necessity of fitting so many of the low-energy properties

considerably reduces this arbitrariness. The main reasons for making these

adjustments are to enable us to better test the validity of the methods

which are being employed and to make the results more useful.

In order to try to estimate the energy shifts which would be needed

to incorporate the spherical field part of the short range neutron-proton

force, we calculated the energy shifts for one particle in all of the

levels used in the various regions, interacting with the particles of the

other type by the method described in Cpt. II. For the single closed
10

shell plus one isotope one does obtain overall improvement , however, there

are a number of difficulties which make it impossible to apply the method

consistently. E.g., using a force parameter of sufficient strength to

account for the 1/2 r 3/2 spacing in the TL isotopes, the change in the

spacing which occurs for the Hg isotopes causes the gap to get extremely

small or vanish for the protons which contradicts the data; and although

the changes in the 1/2 - 9/2 separation in the In isotopes is in good

agreement with the experiments, the resulting values for the P1/ 2 - g9 /2

spacing in the lighter isotopes in that region is not satisfactory.
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On the other hand, from these studies we can see which levels are most

strongly altered and can try to estimate the energy shifts which might be

reasonable. The results of the calculation mentioned above are not given.

We also incorporate the energy shifts which are known to occur in

nuclei; the separation of all of the Cj vary as A1/3 and in

adddition change with the spin-orbit splitting dependence A-2/3.

Having decided upon the parameters, the occupation numbers V and the

quasi-particle energies E are determined from Eqs. (4). The even- and

odd-mass calculations are carried out independently. For the even-mass

nuclei we determine the phonon energy w with several choices of the

quadrupole parameter, while for the odd-mass nuclei we attempt to carry

out a more nearly accurate calculation by using the experimental value of

the phonon energy and fit the force strength from the neighboring even-

even nuclei.

B. Energy Levels of Even-Even Nuclei

Although most of the calculations were performed using the QRPA

approximation and X = = 1 , a number of preliminary studies were

made of the effect of using different coupling constants and of the relation

of the QRPA approximation to the adiabatic approximation. With the exception

of a few nuclei, the adiabatic approximation to QRPA is quite good for the

calculation of the vibration of spherical nuclei. Most of the exceptions

are among the nuclei with a closed proton or neutron shell and thus a parti-

cularly high energy for the 2+ vibrational level. A few other cases occur

for nuclei at a sub-shell such as Z = 40 for which the energy gap is
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particularly small. In the worst cases, the QRPA energy and B(E2) can

differ from the adiabatic approximation by as much as a factor of 2. In all

other cases the energy and B(E2) agree within a few percent for the two

methods of calculation. This indicates that the nuclear vibration is indeed

adiabatic and that it is correct to picture the motion as a vibration of the

nuclear shape of low enough frequency that the individual particle orbits

can follow the motion.

The same values were used for the proton and neutron long range strength

parameters X., and Y-0 for most of the studies, in agreement with the

results found for the single closed proton shell and single closed neutron

shell nuclei. The value of X-np in relation to Xs and 2I1 has

two main effects. Firstly, a very small value of yoIq leads to two

low lying 2+ states (except for the single closed shell nuclei) contrary

to the experimental f- ;t. Secondly, its value determines the 2+ energies

and B(E2)'s of the nuclei away from closed shells as compared with those

quantities for the closed shell or near closed shell nuclei. This is because

the value of Xj has no effect on a single closed shell nucleus in the

approximation used here. One might, for example, choose %I@ and Z-,

to fit the 2+ energies of the single closed shell cases, and then choose

it so that the nuclei just two particles away from the single closed

shell would have the right energy. Although these latter 2+ levels are

much lower in energy than the former, the above procedure leads to a rather

small XA . It should be emphasized that in each region of isotopes only

a limited number of proton (and neutron) single particle levels are con-

sidered; namely those of a major shell. Thus, for example, for the nuclei

below Sn the protons are in the 28s Z$ 50 shell while for the nuclei
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above Sn they are in the 50!EZ 482 shell. For Sn itself, the protons

do not exist for the calculation. Since different numbers of levels are

used in the different cases the effective coupling constant may be a little

different due to renormalization effects. In particular it may be a little

extreme to eliminate the protons entirely for Z = 50 . The effect of the

inclusion of the levels of two shells has been examined and found to

suggest the closed shells are probably not completely inert. For example

the inclusion of the f7/2 level below, for protons and neutrons in the

28• Z:ý50 shell, has quite noticeable effects (softens the vibrator),

particularly for the Ni isotopes. In fact the inclusion of this f7/ 2 gives

more than just a renormalization effect, since it changes the shape of the

2+ curve for the Ni isotopes, lowering the predicted energy much more for

Ni 5 8 than for the heavier Ni isotopes. The shape of this curve could be

corrected again by bringing the g9 / 2 neutron level more into the picture.

With the single closed shell vibrators softened somewhat, the previously

described prescription would give a larger Y np since ( and Y-w could

be chosen smaller.

While many of the detailed variations of the 2+ energy seen in a part-

icular sequence of isotopes could be reproduced by a particular choice for

Y-p , ,and %, , it was not possible, with a single set of

parameters, to fit all these details for all the spherical nuclei. However,

a reasonably good compromise is possible. It is found that the choice

Y X= " seems to give overall results as good as any. This

choice together with a Judicious choice of the single particle energies and

pairing strength reproduces the variation of 2+ energy fairly well.
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The exact values of w near the point at which w2 becomes negative

for a particular isotope series is extremely sensitive to the value of

because w is increasingly sensitive to X for increasingly small w.

This can be seen from the adiabatic limit Eq. (44). For w Z 0 ,

(53)

where 7- is the value of % for which w = 0. Thus it is not surprising

that while the fit is reasonable if w is not too small, for those isotopes

for which E2+ is less than about one fourth of the pairing gap, the smallest

change in )6 or isotope number can mean the difference between E2+ = 1/4"

gap and a predicted deformation. On the other hand near mass number 150

the point in the isotopic table at which W2 becomes negative is such a

general feature of nuclear structure that for any reasonable choice of

parameters one can only change this point by about one isotope. In order

to use the model for nuclei as far toward the deformed region as possible,

the value of X used in the calculation of other properties was chosen to

fit the experimental 2+ level energy. Such a set of 7 values are plotted

in Fig. 1 .

Nevertheless, considerable detailed agreement with experimental 2+

energies is obtained with fixed X in each region as can be seen in Fig. 2a, b.

The shape is right in the Pb isotopes, as observed in Ref. 1, in addition

the lower energies are well fit if not in fine detail in Hg and Pt.

Then for all of the lighter nuclei of the so-called deformed region with

the exception of Oe , which is just on the edge and can be made to vibrate

or not with slight parameter adjustments, the 2 < 0 indicating a theoretical
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deformation. From the other side, starting with the good Sn results, the

decrease of the 2+ energy for heavier nuclei Te, Xe, Ba, etc., and the

increase at N = 82 is well represented (only the most neutron deficient
2

Xe and Ba isotopes have w 2< 0). Above N = 82 the deformation quidly

sets in in agreement with experiment on energy level systematics as well as
16

the photonuclear experiments which show a double dipole resonance as one

enters the deformed region near mass number 150 . Presumably our result

that the prediction of spherical symmetry in the O isotopes is uncertain

within the range of our parameters is in agreement with the experiments which
•17

show a gradual transition from spherical to deformed shape in the 0 region .

The rapid drop of the 2* energy as one moves away from closed shells

for nuclei lighter than Sn is also well represented with the same parameters.
2

However, these parameters lead to negative w values for some regions

away from closed shells, in which the nuclei do not exhibit the extremely

low E2 + values and the clear cut rotational spectra characteristic of the

rare earth nuclei. In particular the region of isotopes with N-42

32s Z 136 and the heavy isotopes for Z = 44, 46 are predicted to be

deformed. Although these nuclei do not exhibit rotational spectra, they are

the ones with lowest E2 + values in the vicinity, and in several cases the

odd mass nuclei have low states corresponding to anomalous coupling which

might indicate incipient deformation. E.g. these are cases for which the

simplest interpretation of a low 7/2+ state is that it is a seniority three

configuration of (g 9/23)7/2+. This is essentially the configuration which

would be predicted by the Nilsson model and is thus suggestive of deformation.
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Nevertheless, in the rest of the discussion, the value of w for these

isotopes is taken from experiment and the computations are performed as if

the 2+ was a vibrational state of a spherical nucleus.

C. Energy Levels of Odd-Mass Nuclei

In states of one quasi-particle with zero, one, and two phonons

J t

(54)

the Hamiltonian (47) with the interaction term (45) is diagonalized. Since

we are using force parameters Y, z % -6 , this interaction

has the simple form

H,. -A,- Fj,?'Ij'. ('at÷ B), 9C55)

in which the fjlj represent the coefficients in the sum in Eq. (47) and

K is a quantity which only depends upon the single-particle energy levels,

the pairing parameter, and the phonon energy. In this work we have used the

experimental value for the phonon energy from the neighboring even-even

nuclei for both the unperturbed energies and K for each odd-mass isotope,

and fit the value of X from experimental phonon data. This allows us to

proceed with the important odd-mass data without the necessity of a selection

of parameters so accurate as to fit the very sensitive phonon energy, as was

described above. The parameters used and the results of the calculations are

presented in figures and in Appendix II,
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1. The Region 50 $ Z : 82; 82 • N 5 126

This is the region in which there is probably least uncertainty in

the parameters. From the Pb2 0 7 isotopes one knows the neutron energies for

the 82-126 shell in the region below Pb and from the TU isotopes one has

quite a good idea of the important proton levels. The results for the odd-

mass Pb isotopes are so similar to Ref. I and the work of Sorensen, Ref. 14

that we shall not discuss them.

Let us first discuss the nuclei above the deformed region, Figs. 3 - 7.

For the odd neutron nuclei as one proceeds from the Pb isotopes to the

deformed nuclei at mass number 190 one is removing neutrons from the p1/2P

f5/2, and P3/ 2 levels and the i 1 3 / 2 quasi-particle state is dropping just as

in the odd Pb isotopes. In the Hg isotopes, where the no-phonon and one-

phonon states generally remain well separated one can see this effect. Since

the "opposite" parity states in any region are generally not so strongly

admixed by the quadrupole force, in Pg the mixing is still weak enough

for the 13/2 quasi-particle to move through the one phonon state. The com-

parison with experiment shows good agreement for this state and the fact

that one does not see the isomeric state after Hg1 9 9  is predicted by the

fact that 13/2 level is moving into the one-phonon levels of higher spin for

201 203Hg and Hg . The other one quasi-particle states are affected by the long

range force much more than in the Pb cases, and the results are in reasonable

agreement with the experimental values. For the Pt isotopes the one-phonon

states do not fall quite as low in energy as the experimental ones, while the

occurrence of low lying phonon states in the experimental data for the 0s

@5
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isotopes suggests that one is in a transition region where the methods

employed here are beginning to be inadequate.

The sl/2, d3/ 2, and hll/2 levels are the important ones for the pairing

part of the odd-proton calculation. For the Tl and Au isotopes the theory

and experiments show the phonon states separated from the no-phonon states

while the theoretical calculation does not seem to show the no-phonon state

being sufficiently admixed into the one quasi-particle states for the Ir

isotopes. An increase in the strength of the quadrupole interaction would

markedly improve the results in the Tl isotopes, and then in Au the phonon

states would fall lower, which would be more nearly consistent with the

experimental data.

In order to better describe the effects of the quasi-particle-phonon

interaction we show the energies of the quasi-particle states and the states

which arise from them in the presence of the quadrupole force in Fig. 8. The

quadrupole force has little effect in the odd-Pb isotopes while for the odd-Hg

spectra one can see that the phonon effects are large and very much improve

the agreement with experiment, since the i_ state is lowered with respect to

the 3/2- and 5/2- states. In fact a moderate increase in the quadrupole strength

195 197 199would make 1/2- be the ground state in fig and Hg , and perhaps in Hg

One also sees here an effect which seems to be present in all of the

spherical nuclei, that of the compressing of the quasi-particle states due to

the stronger interaction of the higher-lying quasi-particles with the phonons

(see Eq. (47)). This is an important systematic feature of our coupling

scheme which seems to be verified by the empirical data.

There is not much data below the deformed nuclei for this region, and

one, expects our methods to give rather inaccurate results for cases with

even a few neutrons added to the 82 neutron shell because of the approaching
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deformed region. Dhe only systematic data concerns the odd proton nuclei

shown in Fig. 17 in which one sees the 7/2 and 5/2 states with relative

motion due to both the change of the quasi--particle energies as one adds

protons, and the effect of the quadrupole force. However, the density of

states does not seem to be in agreement even as the phonon states begin to fall

low in energy as one can see in Figs. 13 ana 17.

2. The Region 501 Z 5 82; 50 - N 582

In this region the protons are being placed into the g7 / 2 and

d5/2 levels and the neutrons into the h1l/2, al/2, and d3/2 levels (see

figs. 9 - 17). In so far as the neutron-proton effective shifts can be

neglected, the two important proton levels are accurately known from the N = 82

isotopes. Referring to Fig. 14, one sees that the Sb energy levels give clear

indication that in fact the relative motion of these levels occurs more rapid-

ly with changing neutron number than can be accounted for by the phonon inter-

action of the strength used here. In Fig. 14 the calculation is shown with

dashed lines including the energy shifts due to a delta-interaction between

the single proton in Sb and neutrons. Of course this effect is smaller

for the other odd-proton isotopes, since one is approaching the N = 82

shell closing.

A very interesting phenomenon which is occurring in the odd-proton

isotopes is the important role of one particular state. Both in the theoretical

calculations and in the experiments one can see a spin 1/2 state moving quite
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rapidly with respect to the other states, Figs. 14-16, and even becoming the

ground state in Cs1 2 9 . This state is mainly of phonon character according to

the theoretical calculations. It would be very nice if one could obtain

some information about the transition rates for this state, since we would

predict that E2 transitions to say the 5/2 state would be highly enhanced.

The odd-neutron isotopes are also quite interesting, with very good

systematic data. The Sn results differ from the results in Ref. I mainly in

that is was found that a different ordering of the single-particle levels could

account for the systematics of the 2+ first excited states in the even Sn

isotopes and give much better fits away from the closed proton shell. The

positions of the 1/2, 3/2, and 11/2 states are fit adequately in the Te,

Xe, and light Ba isotopes. However, as one approaches the case of one

particle away from the closed shell at Ba1 3 7 , Ce 1 3 9 , and Nd 14 there are

errors either in handling the effect of the quadrupole force or of the

neglected neutron proton force. Because of the special nature of a calculation

with one particle away from the closed shell the phonon calculation might be

particularly inaccurate for those cases. As for the neutron-proton interaction,

because of the dependence upon the occupation numbers of the states (see Eq.

(15)) and the sudden decrease in the pairing effects as one reaches one

particle outside of a closed shell there might occur a marked difference
in heshftsinth n1 I 11 1

in the shifts in the 2-- and 2- -1separations as one goes from 79 to

81 particles.

In Fig. 18 and 19 are shown the effects of the quadrupole inter-

action on the quasi-particles for the odd-proton and odd-neutron isotopes,

respectively. For the odd-proton cases in the absence of the quadrupole force

one would have only the 7/2 and 5/2 low-lying levels. First one sees that
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the relative motion of the experimental 5/2 and 7/2 levels in I, Cs, La and

Pr is much larger than could be explained by the motion of the Fermi level.

Also, the neutron-proton short range interaction gives very small contri-

butions since one is near the 82 closed shell at which the energy levels

have been determined. The quadrupole force thus not only brings down the

1/2 state and other one-phonon states, but semi-quantitatively accounts for

the 5/2 - 7/2 relative motion.

If Fig. 19 one can see that there are large effects of the quad-

rupole force which generally give important improvements when compared to the

quasi-particle levels. The main effects are to keep the 1/2 level as the

ground or low-lying level for high neutron numbers to give consistency to

the spectra of Sn, Te, Xe, and Ba. It also tends to lower the 3/2 state,

keeping the 11/2 level from being the ground state or very low-lying state

in all of the isotopes with N>?69. In the light Sn isotopes one sees that

the relative shifts in the 1/2 - 7/2 levels go in the wrong direction making

the fit a little poorer, although the energy shifts involved are only 0.1 to

0.2 Mev. From all of the evidence we can gather it seems that the general

description and approximations used in this work are adequate for all of the

isotopes in this region.

3. The Region 28 4 Z ! 50; 50 l- N 'S82

For the odd proton isotopes in this region, the Pl/ 2 and g9/2

levels are mainly involved, Figs. 20 - 23. Because of the great difference in

the radial wave functions of these two states, their overlap integrals with

the g7/ 2 and d5/ 2 neutrons are very different. For this reason one can expect
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these levels to effectively change their relative spacings as one changes the

neutron number. In the calculation there is included a shift of the g9 /2

level of 0.1 Mev per neutron to account for this effect.

For the Tc, Rh, and Ag isotopes it seems almost certain that our

coupling scheme is breaking down. The occurrence of the low-lying 7/2 and

perhaps 5/2 positive parity states would have to be explained in our method by

a coupling of the g9 / 2 quasi-particle to the phonon. However, we are never

able to bring that level nearly as low as required, and do not seem to have

a mechanism for causing such rapid changes in these levels as do occur for the

spin 1/2 states. If we would include the three quasi-particle states .-here

would probably be introduced important corrections. In fact this would be

analogous to the type of calculation done for the configuration (g9/2)3,

which has been used by Talmi for calculations which do have a 7/2+ state 18, but

it is not clear that such a modification would be adequate to handle this

situation. One should note that the even-even isotopes in this region show

great instability for the spherical shape.

A similar situation seems to be present in the odd-neutron isotopes,

Fig.s 24 - 27, where for the Ru and Pd isotopes there is obviously a

strong admixing of phonon states in the low excited states. However, in

these cases it is not so clear that the coupling scheme is inadeuate, although

there is a tendency for the phonon states to remain too high to account for

the density of low-lying states.

4. The Region 28 'Z :50; 28 t N ! 50

In this region the protons and neutrons begin to have a large

probability of being in the same J-levels, so that one can expect the
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neutron-proton short range interaction, which has been neglected except for

its field producing parts, to become very important. Moreover, the inclusion

of the f7/2 levels in the calculation of the energy of the 2+ state con-

siderably alters the relative positions of the 2* states in the even-even

Ni isotopes and indicates that at least for the lighter isotopes in this region

the f7/2 particles must be included - which makes the neutron-proton short

range force important even for such isotopes as Ni and Cu. In fact, the

level spectra in this range cannot be understood in terms of the coupling

scheme used in this work.

In the odd-proton isotopes shown in Figs. 28 and 29 this is most

evident in the As and Br isotopes for which the neutrons are filling the

99/ 2 levels. Here one sees many low-lying levels which originate from the

phonon states and other states of higher seniority. We can understand a

little of this in our coupling scheme, such as the low-lying 9/2+ state in Br

ih spite of the 9/2+ quasi-particle being at 1.5 Mev, but since a number of the

levels apparently originate from the seniority three states we cannot hope

to account for them (see Cpt. II).

One sees similar results in the odd-neutron isotopes, Figs. 30,

31 and 32. Once again the 9/2+ state can be lowered by the quadrupole inter-

action while the 7/2+ state is not much affected, just as in the cases of

the odd-protons filling the g9/ 2 levels discussed in the preceding section.

Near N = 50 and to a lesser extent near Z or N = 40, the vibrations

stiffen and the picture once again simplifies approximately into the quasi-

particles. It should be pointed out that because of the obvious inadequac-

ies of the model there was no attempt to obtain the best parameters in this

region and only a few sample calculations were tried. It seems clear that
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both a better treatment of the phonon-quasi-particle coupling and the intro-

duction of the neutron-proton short-range will be needed for a semi-quantita-

tive treatment of this region.

D. Energy Levels of Odd-Odd Nuclei

Owing to the large number of low lying levels, both theoretical

and experimental, in odd-odd nuclei, it would be difficult to use the energy

level systematics to help determine the parameters of the theory. However,

the odd-odd levels can be shown to be consistent with the theory parameters

determined from other data (particularly the odd-mass level energies). All

the levels of odd-odd spherical nuclei of known spin and parity may be de-

scribed consistently as a state of the lowest (or other low) Proton quasi-

particle coupled with the lowest (or other low) aeutron quasi-particle.

The effect of a coupling of the quasi-particles to a phonon vibrator is

suggested in a few cases to be discussed below, and the coupling force between

the two quasi-particles (which we shall not discuss here) shows itself in the

fact that only one or two of the angular momentum states arising from the

proton-neutron quasi-particle pair are seen in the low energy spectra. (No

coupling force would imply a degerate multiplet of levels which is not seen

experimentally).

Since the quasi-particle energies correspond to the odd-mass low energy

spectra, and since the parameters were chosen to agree (as well as possible)

with the experimental odd-mass spectra, the above description of the odd-odd

states means that these states are made up of the angular momenta appearing
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near the ground state in the adjacent odd mass nuclei 1 9 . This description

is used by Brennan and Bernstein20 who in addition deduce coupling rules. In

general we agree with their assignment of the P-N configuration (P-N quasi-

particles in our case), however we will note a few exceptions.

For P < 28 N > 28 all the odd-odd levels of known spin and parity can

be fit with f/2 proton quasi-particle and a p3/ 2 or f5/ 2 neutron quasi-

particle. For P.> 28 but N < 42 there are three cases for which Brennan

and Bernstein make the P,N assignments p3/ 2 " f5/ 2 for a 1+ state. For

29Cu 37and 3 1G• a more likely assignment would be P3 / 2, Pl/ 2 as the 0

decay (/4 * 0+) rates have log ft values of about 5.2 (see the section

on P decay of even-mass nucle4. In the neighboring odd mass nuclei the 0

decay rate is known for six proton -P 3 / 2, neutron "f5/2 transitions and the

log ft values range from 5.7 to 7.4. We agree with their assignment for

Br 76  for which the log ft of 8.4 suggests that it is A forbidden. It is35 41fow
a bit surprising to find the f 5/ 2 neutron quasi-particle so low for N - 41.

For 42 < N < 50 maror of the levels have an I- 1 proton and a g9 / 2 neutron.

There are, however, four cases with N - 43, 45 where a 1+ level has a fast

0 decay (log ft - 4.6) to the adjacent 0+ ground state. This must have

the p3 / 2 proton coupled to the p1 / 2 neutron. For n = 43, 435 the 9/2

neutron quasi-particle lies -- 0.2, 0.6 Hev below the Pl/ 2 quasi-particle, but

the particularly strong coupling of the p/2 quasi-particle to the phonon

vibrator lowers the pl/ 2 level to an energy coumparable with the g9 / 2 energy.

For P < 50, N > 50 the positive parity levels are explained as a 9/2

proton and a g/2 or d5/ 2 neutron. There are a number of negative parity

states explained as plpprotons with ad5/2 neutrons Such levels occur e.g.

for Z - 45 where once again the phonon coupling is important in bringing down

the pi/ 2 proton level enough to compete with the g 9/ 2 proton level. Brennan

and Bernstein assign P - (Q 9/e)7 / 2, N - do/2 to four 1+ levels in this
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region. All of these have fast 0 transitions to the neighboring ground

state 0+ the average log ft = 4.7. This would suggest P = g9/2 N = g7/2

to be more reasonable. Brennan and Bernsteins' assignment comes from the

neighboring odd mass ground states which are in some cases 7/2+ and 5/2+.

The 0 decays between these levels are seen in several cases and have in

general ft values an order of magnitude or two higher than the 1+ - 0+ ft's.

This argument is weakened somewhat by the occurrence of two fairly fast

7/2+ - 5/2+ 0 decays in this region with log ft " 5.0.

For Z > 50 N < 82 all the odd-odd levels of known spin may be

obtained from a d5 / 2 or g7/2 proton quasi-particle coupled with a S1/2,

d3 / 2 or h1 1 / 2 neutron. Many of these states could be composed with the 1/2+

protron state which is often low-lying in this region. For N > 82 up to

the deformed region, the neutrons move in the h9/2 and f7/2 levels. The

odd-odd nuclei with 186 -4 A * 206 have mostly negative parity levels which

can be explained among other possibilities as an h1 1 / 2 proton and an i13/2

neutron. The few positive parity levels for A > 200 can be formed from an

hll/2 proton and an f 5/2 neutron.

It is seen that no difficulties arise in describing odd-odd nuclei on

the quasi-particle basis, but to use the theory to predict level positions

quantitatively, it would be necessary to include accurately residual inter-

actions that have not been considered here.
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IV. ODD-EVEN MASS DIFFERENCE

There is now available a large body of data on nuclear masses of

sufficient accuracy that it may be possible to see finer details of shell

and interaction effects. The pairing force actinL between pairs of protons

and between pairs of neutrons produces the types of odd-even mass difference

6021which are observed experimentally6'2. We define three odd-even mass differ-

ences

Pp (ZN) - B(Z-,N) + E(Z + 1,N) - 2E(Z,N) (56)

Pn (ZN) = E(ZN-. ) + E(ZN + 1) - 2E(ZN) (57)

p (ZN) - E(Z + l, N - 1) + E(Z - 1, N + 1) -2E(ZN) (58)

where in (56) Z is odd, N even; in (57) Z is even, N odd; and in (58)

both N and Z are odd integers. E(Z,N) is the binding energy of the

Z,N nucleus. Aside from the effect of the long range part of the force,

which we ignore, these mass differences are simply related to the quasi-

particle energies. Pp compares an odd Z nucleus to the adjacent even-even

nuclei and should thus just be equal to 2Ep, twice the energy of the ground

state proton quasi-particle. Similarly PN - 2E. and PNp - 2FN + 2Ep where

E represents in each case the ground state quasi-particle energy.

To test the agreement between the theoretical E's and the experimental

P's we plot all the experimental data for P p(Z,N) with Z as the abscissa,

see Fig. 33. On this same graph the heavy line is 2E p(Z). Actually E

depends on N as well as Z, but to make the plot readable we simply average over

this small N dependence for each Z value. Similarly on an N scale we plot
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all PN(Z,N) data against 2EN(N) averaging over the small Z dependence

of the theoretical energy, see Figure 34. TAe theoretical curve 2 N shows

considerable structure including a sharp dip at N = 50,82,126 and a less marked

one at N = 40. Eac'. of these features is also seen in the data although

there is considerable scatter of the points. Also the overall trend as a func-

tion of N is well represented by this choiLe of parameters. The theoretical

E curve has less noticeable structure showing a little dip at Z = 50 and

otherwise being a decreasing function of Z to Z = 82. The experimental

points show a large scatter with little structure. A general decrease in

P is only seen in that the points above the deformed region 65 ' Z < 75

are lower than those below.

The quantity PEp + 2 EN depends equally strongly on Z and N. To

show any possible structure of the data without resorting to a two dimensional

plot we produce all the PPN data on each of two plots once against Z and

once against N as the abscissa (see Figures 35, 36). As the scatter of

the data does not seem to justify a more detailed comparison the plots are

compared to the theoretical curves averaged on N and Z respectively for

the two plots. The main structure noticeable in the theoretical curves,

the dip at Z = 40, N = 50, shows up even more strongly in the experimental

points. The lowest points are for Z = 39 where the isolated p 1/2 level

is filling giving a small effective degeneracy and thus a small energy gap,

while the Z = 41 points are higher. This effect is also observed in P .
p -

The smaller dip at N = 82 can also be seen in the data and the rapid drop

as N approaches 126 is also reflected in the data. For Z> 45, N > 60 the

magnitude of the theoretical curves and experimental points agree well, but

for the lighter nuclei, while the theoretical curves rise higher, the experi-

mental points have a constant average magnitude from A - 50 to A " 130.
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This is int opposition to the P data which shows afteady rise with decreas-

ing A in this region in agreement with the theoretical curves. Although

there are some discrepancies, it is seen that the pairing force model can

account for shell and sub-shell effects in the even-odd mass differences in

some detail. It is clear that forces other than the pairing force must be

included to account for the large fluctuations.

V. 'MAGNETIC DIPOLE LAOHITS

A. Magnetic Dipole Moments of Odd Mass Nuclei

The magnetic dipole moments have played an important role in the shell

model since its earliest beginnings, and from them we have been able to

derive important properties both of the nuclear coupling scheme and the

nuclear forces. From the observation that in many instances the experimental

values of these static moments for odd mass nuclei tend to be associated

with the value one would expect with a single particle in a level with the

spin and orbital angular momentum of the state, one can conclude that the

coupling scheme must be similar to that suggested by Mayer and Jensen

("simple seniority) for these regions . In other regions they provide

evidence for the deformation and offer some quantitative information about

the collective properties of the states 23. For the spherical nuclei we attempt

a detailed study to try to derive in terms of particle coordinates both the

important particle and collective effects involved in producing deviations

of these moments from the single-particle values.
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1. Quasi-Particle and Collective Contributions

The operator for the magnetic dipole moment in the quasi-particle

representation in 1"%t

*VJ.VJ~ + fljjav - u{ (UVj-tJV)( j'(-)r'

(59)

in terms of the single particle operator /1 4 s S *&A. I- with

s= 5.585 (-3.826) and & . I(0) for protons (neutrons). The operators

^A and Alt are the quasi-particle scattering and double creation

operators, respectively, of rank one. ( See Cpt.II and Appendix I)

This operator must be evaluated in the states of one quasi-particle

with various numbers of phonons

d- 1P 14l2.. . ý
XiJ (54)

which have been discussed in Cpt, II. It is clear that the T. and At parts

of the magnetic moment operator are of entirely different character, since

the 'A operators do not change the number of quasi-particles, while the

other terms create or destroy two quasi-particles. Although the At terms

are almost entirely responsible for the Ml transitions between the collective

states, and are treated in Cpt. VII, they play a very minor part in the

calculation of the magnetic dipole moments, and are neglected here. The 7L

terms contribute both from the quasi-particle and the phonon parts of the

wave functions. It is convenient to approximately separate this operator

into two parts, one of which operates only on quasi-particle and the other
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on phonons.
•o, 11 Atl 3"'<, j> (uj uj, +VI VJI) ORS. + JR•z

J '1 (60)

:/x./.+ R R 7 ,

with

t  0 (61a)

and

CR 9(61b)

This is possible because of the adiabatic character of the vibrational states,

which enables quasi-particles to be distinguished from phonons to a good

approximation as long as the first vibrational level is well into the gap.

The operator R. appearing in Eq. (60) is the collective angular momentum

operator, which is diagonal in phonon number and has diagonal matrix elements

in states oLj, IF. , [ I j 4) and O IBIBI13 J ip

which are given in Appendix IIIi Eqs. C(l), C(2), and C(3). In Section B

the phonon g-factor, gR is derived, and the results of systematic ealcula-

tions are presented, but in the calculation of the odd-mass nuclei we use

9R = Z/A, since the results are insensitive to this value.

The only non-zero matrix elements of the particle part of the magnetic

moment operator, 10,10 P defined by Eq. (60) are for states of no phonon

diagonal in the quasi-particles, states of one phonon diagonal in the quasi-

particles or with quasi-particle spin-orbit pairs, and states of two phonons

diagonal in the quasi-particles or with quasi-particle spin-orbit pairs.
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From Fq. C(3) one can see that the weak coupling limit for the magnetic

dipole moment is just the single particle (Schmidt) value, AA, ,

and the only deviations from the shell model results are produced by the

collective effects in this approximation. In Ref. I the coefficients

were determined in perturbation theory and we shall not repeat those results

here. In this work we determine these coefficients by the method derived in

Cpt. II. However, the qualitative conclusions of Ref. I are unchanged, i.e.,

that the phonons themselves do hot contribute very much to these moments,

but that the major effect is due to the admixture of other quasi-particles;

and that the predicted deviations from the single-particle values are much

too small to account for the experimental results.

2. Higher Seniority Contributions

In the spherical region, the major cause for the deviation of the odd-mass

magnetic dipole moments from the single-particle values for one shell model

configuration is the admixture of small amounts of other configurations of

higher seniority, as Blin-Stoyle24 and Arima and Horie25P2 6 have demonstrated.

Although the wave functions (54) deviate strongly from pure seniority one,

neither the pairing nor the quadrupole force can account for these particular

types of configuration admistures. For this reason we calculate the additional

contributions which arise from a S -function interaction in the manner

described in Ref. I.

Systematic calculations of this effect have been carried out by Freed

and Kisslinger 27. We now sketch the manner of calculation. From the quasi-

particle states are projected states of the proper number of particles
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tCO) 'As via

e noCah i j 0 P

+ (0)

other notation is that of Ref. 27. The n. are even, p is odd, j•;(0)

indicates the seniority zero state of ni particles in the ji level, and j (j)

is the seniority one state of particles in the j-level. The admixture co-

efficients a (e) and a(0) are given by

%. = .(e) I-ii: U '' + I - 11Z /I.. (Mi/÷L '•/ "[ýL/)! 4J ' + I- NA/ ) 0' -
J'5A'Cr

S -IZ

_hi i ,000 qY/2 (P- ) .
( U j vV 1  ( 1 + -6

(63)

The subscript c stands for a configuration n1, n2 ,.. for the evens

or nl, n2 --- p for the odds. With the 6-function interaction between

all particles which was the same used by Arima and Horie, V.. ( 1(rI4)) V( -j

to each of the even and odd configurations in Eq. (62) are admixed configurations

of seniority two or three, respectively, which are important for the magnetic

moments. These are configuration admixtures in which particles in spin orbit

doublets are coupled to angular momentum unity, the rank of the dipole moment

operator. Since this is discussed in detail for pure configurations in Ref.

26, we do not give those results here.
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As a result of these configuration adrnixtures, the magnetic moment of a

quasi-particle of orbital angular momentum A and angular momentum j is

altered from t4$.p.(Lj) to

.V E N 0 0 0 0 Ct.. . r VEA, (64)

In Eq. (64), the sums run over the c'onfigurations with even and odd numbers

of particles. The procedure for calculating the changes in the magnetic

moments due to the admixtures to the even and odd types of configurations,

a gCand , respectively, is exactly the same as that

described in Ref. 27 except that in the present work harmonic oscillator wave

functions are used for the radial integrals 1(.1;A 1 ' ) = 2 .R , 4 A '

The third column of Tables I, II lists these quasi-particle moments for various

states in the spherical nuclei with the same parameters for the pairing force

and the single particle energy levels as are used to obtain the energy system-

atics discussed in Cpt. III.

Having calculated these quasi-particle moments, one simply combines these

results with those of the previous part to obtain the magnetic dipole moment

of an odd-mass nucleus. Separating the contribution from the zero-, one-

and two- phonon parts of the wave function, the final result is

with

j j 0 ,14 . -1) +•••d,'• j(i, 0 J'f'R

Ci~ C (tY- "'44  + Vf'*"_i) [(Atj *7a(~*V~J j -So (66)A
*(t-Yr
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and

JjIj . ' , je+J 'AL•, ('Cj• 1. 7) -- • J•,,

S3 (j+.) ' J, +1)j(j+I- I-RJ (67)

3. Results and Discussion

In Tables I and II are listed the experimental28 and theoretical results

for the odd-proton and odd-neutron magnetic dipole moments, respectively, in

units of nuclear magnetons. Following Ref. 26, we use harmonic oscillator

wave functions and take the quantity V I as a dimensionless radial integral

C A , in which C is a constant. The value of C = 50 Mev is

used for all of the calculations. One can gain some systematic improvement

in the fitting of the data with some variation in the magnitude of the force

in the various regions, as is discussed below. Also, in Appendix II we

include sufficient information about the states to make possible a rapid

calculation of special cases with different values of the parameter, if this

is desired. In the tables the ground state is starred when known (column two),

the fifth column lists the contribution from the no phonon component

AU' (Cj0o) . (Itj ) and the other columns are defined in Eqs. C4

and (65-67).

For the most part the largest portion of the dipole moments arise from

the quasi-particle with no phonon, with the higher seniority corrections play-

ing an important role. Therefore this aspect of the calculation is an average

over the results using pure configurations, with the averaging determined by
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the pairing force. One can see that the two phonon contributions are almost

always quite small. Although the one phonon contributions are frequently large

this is usually due to the quasi-particles which are admixed with the phonon

rather than the phonon itself. To make this quantitative, as well as to make

additional calculations easier, we have also given the results with the phonorn

gR- factor equal to zero -- thereby keeping the contributions of the admixed

quasi-particles but neglecting that of the phonon itself. In very few cases

are the results changed very much and there is not sufficient systematic depond-

ence upon the value of this collective g-factor to try to estimate its magni-

tude from the odd-mass data.

For the odd-proton nuclei the theoretical results are in good agreement

with the experimental data. The main errors seem to come from the treatment

of the admixtures due to the 6 -force. One can see that for the T1 ground

states, in which the phonon admixtures are negligible, a decrease in the

force strength C of some 30% is needed to increase the theoretical values to

about 1.6 nm. However, for the 3/2 states in Au and Ir it might be difficult

to fit the experimental values unless the admixtures introduced by the long

range force are altered, for although a decrease in C reduces the magnitude

of the magnetic moment of the 3/2 quasi-particle it increases those of the

1/2 and 5/2 quasi-particles, which are admixed by the phonons.

There is also a large inaccuracy in the calculated value of the 1/2 ground

129
states in Cs This is not unexpected since this is the rather unusual state

arising in the zeroth order from the 5/2 quasi-particle coupled to one phonon

and is therefore especially sensitive to the parameters (see Opt. III). In

fact one can see that only a moderate increase in the admixture of the $/2

quasi-particle and one phonon component of the state would be needed to increase
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the theoretical value to 1.4ý nm, since the 5/2 quasi-particle has the largest

moment of 3.61 nm for this isotope.

The results for the 1/2-states are of special interest. Although the

configuration mixing due to a &-function force is unable to alter these moments

from the single-particle values, which is an important argument for the validity

of these methods since the experimental values are also close to the single-

particle values2 , the configuration mixing due to the phonons is able to

accomplish this. The best systematics are found in the Ag isotopes, from

which one sees that the magnitude of the shifts from the single-particle value

are in general agreement with the experimental results. This is the clearest

case for which one can separate the effects of the long range force from the

short range f . .e for the magnetic dipole moments. There is no indication of

a need for a quenched particle moment.

The numerical results for. the odd-neutron isotopes are not in as good

agreement with the experimental values as for the odd-proton cases. In the

lighter isotopes the calculated results follow the experimental trends but vary

too strongly from the single-particle values. However, a decrease of the

constant C by about 20% would bring all of the theoretical results into

satisfactory agrement for this region. For the isotopes above the deformed

region a large change in the value of the strength of the &-force is called

for. A choice of the constant C of 25 Hey instead of 50 Flev would bring the

13/2 and 3/2 states into approximate agreement with the experimental values

without changing the 1/2 quasi-particle moments, which is consistent with the

results for odd-proton nuclei in this region.
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The large discrepancy in the moments of the 1/2+ states in Te and Xe is

due to the large phonon plus 3/2 quasi-particle component. This could mean

that the wrong spin 1/2 level is dropping down, a result which could follow

from a relatively small change in the unperturbed states before the quadrupole

force is included.

The general conclusion for the magnetic dipole moments is that there are

a number of different effects which are important for at least some of the

nuclei, and that one must include all of them to gain quantitative agreement

with the systematic data. However, since the phonon contributions are often

about equal to the decrease in the no-phonon contribution from the pure quasi-

particle value, the final numerical result is often similar to the pure quasi-

particle moment, although the interpretation is quite different. Thus these

moments are seen to be rather insensitive to important nuclear structure con-

siderations.

B. Magnetic Dipole Moment of One-Phonon States

In the preceding section we have used for the g-factor of a phonon, gR"

a value of Z/A which is the approximate prediction of the collective model 2 3 .

In this section we evaluate gR in terms of particle quantities. It is the

scattering terms A in the moment operator which lead to a non-zero moment.

From Eq. (59) the magnetic dipole moment of a phonon is

• 3_iKJhII(�IJ>(UU'.VJVJI (,)<• BCl ,jIBt4P,>. (68)

jJ'
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The matrix element in Eq. (68) is evaluated by taking the commutator
I t<013IB'ji 0t .>=<.71'j 813"p> +0"% [B,,?j] 113t.o

SBt

(69)

in which the Sawada approximation, [B, B+] = 1 has been applied in the first

term. This first term, which involves the interaction between quasi-particles

in the ground state is generally considerably smaller than the second term,

and is neglected henceforth. Applying the commutation rule for

[71& A C Given in Appendix I, Eq. (A4),

and the analogous commutation rule for I?", A ] 3 one finds that

'j-jejjai;j•., zj= • 'o,," (Ij.• J> (uj X.u, Vj VJ, C a Wo•. ." J2

,w j,) ].(JJ,) + I, (jej),(,JU) ) (70)

in which the r and s are the coefficients which appear in the expansion

of the phonon into quasi-particles (Eq. 34). Writing this out fully, one has

SO = Cs C 4% 1 N1 A )1 J>. J( j Vi, + Y' Vj') Wc(J',;"JJ2".)

*jj'J'*

•(uJ 'M.,* u•, ;(,v. ,%v. (E, s- i• •,,('jp'<'',/•
[(rd.+ ,E,,,a2.. L.,J. •j, ,,' •'hi (71)

N is defined by Eq. (94).
Wa
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The results of sample calculations for the parameters used in Cpt. III

are given in Table III.

VI. ELECTRIC QUADRUPOLE MOME'NTS

Although the experimental data for quadrupole moments is less extensive

and often less reliable than that for magnetic dipole moments, it offers new

possibilities for information about nuclear structure, in the first place,

even in the Mayer-Jensen coupling scheme the quadrupole moment changes from

a maximum positive value for one particle to a maximum negative value as one

adds pairs of particles, so that the magnitude of the moment gives information

about the filling of the particle levels. As was pointed out above, if one

knows the occupation numbers of the particle levels in the pairing scheme,

one completely specifies the wave function, so that in the absence of other

effects the quadrupole moments provide quite direct evidence about the wave

functions in our model. However, the other point in which there is a strong

qualitative difference between the systematics of magnetic dipole and electric

quadrupole moments is large additions to the quadrupole moments which arise

from the admixture of phonon states to quasi-particle states, so that the

particle contributions are often considerably smaller than the collective ones,

A. Odd Mass Nuclei

1. Quasi-Particle and Collective contributions

The expression for the quadrupole operator in terms of quasi-particles

has been given in Cpt. II, Eq. (l7) (here we include the extra factor of (I /5)

to conform to the usual definition)
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0.o = ['/•/i) E <i' l t ' 4)/" L (vjv, ,.v4,V) (Aj ÷ (''Aj'j)

1 (72)

For the evaluation of this operator in the states of odd mass nuclei (see Eq.

(54) the 'n terms connect the parts of the wave function with equal numbers

of phonons, while the At terms change the number of phonons. Let us first

treat the latter terms.

Because of the nature of the collective states as quadrupole vibrational

states, in case of competition between particle and collective parts of the

w.ve function, we can expect the collective aspects to be much larger for the

quadrupole operator. Therefore, in evaluating the At terms in Eq. (72)

we can neglect the quasi-particle contributions compared to the phonon contri-

butions with an accuracy which can be estimated by cormparing the single-particle

E2 transition rates to the experimental values, i.e., with an error of less than

ten per cent in most nuclei. In fact, since the quasi-particle transitions

are hindered for E2 transitions (see Cpt. VII), the accuracy is probably consider-

ably better than this in most cases. The most important part comes from the

off-diagonal elements between the one-phonon and zero-phonon states. The matrix

element involved is

A t( t

(73)
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This is most easily evaluated by recoupling the phorion operator to the

quadrupole operator:

Co - 'M

2.w -%-j i'< Ti) ( c jm f [ Qo 13' j c'-- Y (74)

in notation indicating that the quadrupole operator is vector coupled to the

phonon operator, which is in turn coupled to the J' quasi-particle to form a

quantity of angular momentum J. One can take advantage of the fact that

<Jdj" IBt zO, (75)

to replace the factor Q. BtIj by the commutator [Q BJl which we

define by
s" B .- •, t ] ;L •

[ , ,,,z [ah 3 CM M-776
,m I (76)

Using the approxir.ate commutation rules (26), this commutator is

ra.,5 1]" • gs• • ' .vs,€ J ,)<J'u, Ii, "(A.,fJ'J)+ ÷ O•,(J}'),
S€ eff"

(77)

which is the result used to obtain the B(E2)'s. Obviously, this result must

be intimately connected to the B(E2)ts, since the same operator is involved,

and the expression for the matrix element in question, with the above approxi-

mations (which, essentially, are the distinguishing of the quasi-particles

from the phonons), is simply
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~diiia~tf~J8JiiE52. -f7-- (78)

These matrix elements give most of the contribution of the At terms in

Eq. (72) and are the only ones included in our calculationis.

In evaluating the -A terms in Eq. (72), we make the same type of

approximations as were used in the case of the magnetic moments (see Cpt. V,

Al). However, we shall keep only the one quasi-particle matrix elements of

71 since the one phonon and two-phonon matrix elements are never more than

about 25% of these terms. Moreover, (for the quadrupole moments) the purely

collective contributions from the At (derived above) are usually consider-

ably larger than the1f contributions. It is easy to see that the collec-

tive contributions to the one-phohon diagonal matrix elements are of the

same magnitude as the quasi-particle contributions, and they are also ignored.

The matrix element of the "C terms in the state of one quasi-particle and

no phonons is

2.(J + 1) • (79)

which is the same result as derived in Ref. I. However, in addition to

the pure quasi-particle results, there are contributions of about equal

magnitude from the admixture of other configurations. This is treated below.

2. Contributions from Configurations Admixed by a S -Function Force

Just as in the treatment of the magnetic dipole moments, there are

certain configurations admixed by a S -function force, or any other short

range force, which are not admixed by the pairing or quadrupole forces in

the approximations used in this work, but which contribute to the quadrupole
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moments amounts of the same general magnitude as the single-particle contri-

butions.

On the other hand, one has already included a certain amount of configura-

tion mixing by introducing the effective charges eep in Eq. (47). These

effective charges are presumably due to the polarization of the closed shells

by the particles in the major shell being filled , and are associated with

configurations at the energy required to break a double closed shell. The

configurations considered in this section are essentially associated only

with the particles in the levels being filled, and are at energies of the

magnitude of the gap, which is considerably smaller than the energy needed

to break a closed shell (an essential assumption of this model). Still, the

separation of these effects is not at all complete, and effects such as the

blocking of some shell model levels by adding particles outside the closed

shells will also change the magnitude of the effective charge which arises

from the closed shells. Thus the calculation of this section also gives an

estimate of the magnitude of changes in the effective charges as one fills a

major shell.

Referring to Eq. (62), for both the odd and even pure seniority one

and seniority zero configurations there are additions to the quadrupole

moments. Let us refer to the state in which the odd number of particles are

in the l.o jo level, with p odd particles in a particular configuration.

For each level in which there is an even number of particles, i.e. 2! ý -

whether of the even or odd type of particles, there are admixtures to the

quadrupole moments of the form

- .i .+ - 0)
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In Eq. (80) the factor f depends upon the single-particle values

for the j Is and J's, the occupation numbers, the force strength Vs, and

the radial integrals. The explicit form is given in Ref. (26). In the energy

denominator, when the admixed configurations involve elevating a particle to
2

its spin orbit partner we use the parameters of Cpt. III or 7(21 i + 1) A7

Hev. There are also admixtures for which ACi is zero. These are simply

the broken pair contributions of spin 2 which give the major effects for the

additional quadrupole moments arising from the configuration mixing of the

particles in the shell being filled. The quantity 21, i9 the energy for the

lowest excitations which break a pair, and is used to represent the average

energy to break a pair for each of the pure configurations. There are similar

equations for the admixtures from the odd level, which can be found in Ref.

(26), and which are treated in the same manner.

Referring to Eq. (80) one can see that there is a slight complication

for these admixtures to the moments compared to the analogous magnetic dipole

moment calculation, since the admixtures of the even type depend upon p, the

number of particles in the odd level. The physical interpretation of this

fact is that the quadrupole moment for a half-filled subshel.l is zero, for a

shell less than half-filled it is negative and for more than half-filled it

is positive. Thus, if for each p the O£.' are summed for the

even type with occupation numbers n, n •.. , and this is referred to as

L ~1 .. , the resulting change in the moment from the even

configuration n1 , n2  is

L(ENP
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where P = probability of finding p particles in the j-level.P

6 c D, 9the change in the quadrupole moment arising from an

odd configuration, is calculated as in Ref. 26 with the modifications

mentioned above. Therefore, we obtain as the electric quadrupole moment

of a quasi-particle

1j.C" ( Vj" J&- I.)~ j>
) e .Jil

EVeAV+• • i•.6Lt o +.•• oewI at•I Q
+

(82)

Finally, combining Eq. (78) and (82), the electric quadrupole moment is

,.j ~~J j 1).j ] 26 [ ,B- - "f:.-, 3,.)3,
(V•l2,,i4 CJ> :(+cfo)1 ;/2.-C- 0 0 C.) (83)

The results are given and compared to experiments28 in tables IV and V

for odd-proton and odd-neutron nuclei, respectively. The third column in

the tables gives the uncorrected quasi-particle quadrupole moments, Eq.(79)9

the fourth and fifth columns give the corrected moments for two choices of

the effective Qharges, . and Qtheor is the total result

using effective charge of 1 for the neutron and 2 for the proton. In

these tables one can see that although the phonon contribution often domin-

ates, in many cases the single particle parts are as large or larger than Qh

and that the higher seniority terms are very important for the quasi-particle
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quadrupole moments, Q qp.. In nminy of the cases in which the calculated

result is too large, the use of the experimental value for the B(E2)'s

improves the comparison with experiment.

B. Electric Quadrupole Moment of One-Phonon State

In exactly the same manner as the magnetic dipole moment of the one-phoodn

state was found (Cpt. V), one can calculate the electric quadrupole moment of

a phonon. The result is

< B>5

< E JII- +F(i',.IJf"o Ej+---'-----'

(84)

There is not the regularity to be expected for these moments as is

expected with the magnetic dipole moments. 'Ihat this is true is apparent

from the factors (UjUj, - VjVj,) , which produce cancellation and wide

variation in the results. Since there is no experimental data, we do not

carry out the numerical calculations for these phonon moments.
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VII. ELECTROMAGNETIC TRANSITIONS

Since the electromagnetic field is so well understood and electro-

magnetic radiation from nuclei has been carefully worked out the data on the

gamma transitions provides important information about many aspects of

nuclear structure. In addition to the purely spectroscopic information which

one obtains from the general character of the multipole radiations, one can

learn many of the details of the nuclear wave functions from the transition

rates. Moreover, because this type of experimental information is so exten-.

sive, it is often possible to pick out particular transitions in a number

of nuclei which stress particular parts of nuclear wave functions, thereby

providing systematic studies of various aspects of nuclear structure.

A. Odd-Mass Isotopes

The pairing correlations play an important role in the electromagnetic

transitions. Because a quasi-particle is composed of particles plus "holes"

in the shell model states, the transition between two quasi-particles states

involves both particle and hole transitions, or, in other words, the transi-

tion involves particle states and time-reversed particle states. This is the

origin of the result given in Ref. I, that the matrix element of single-particle

operator c = <'<1"'t|.> b1 b1  in one quasi-particle state

is related to the single-particle matrix elements by

f (U U (7TVj _ V4) <471f.I (85)
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where T is the time reversal property of the operator, i.e. T = 0 or 1

if the operator does not change sign or does change sign, respectively

under time reversal. For electromagnetic transitions the result is that

the matrix elements of the electric and magnetic 2 L pole transition

operators in quasi-particle states are related to the single-particle matrix

elements by

(86a)

(86b)

since the magnetic operators change sign while the electric ones do not.

This effect wasstudied for single closed shell nuclei in some detail, and

gives an accurate estimate of some of the transition rates since for those

isotopes the effect of the long range force on the one quasi-particle states

is not so very important.

In order to carry out a quantitative study of the systematics of

the isomeric transitions for all of the spherical nuclei, it is necessary

to include the effect of the phonon admixtures. For the transitions of

high multipolarity, such as the E3 and M4 transitions, it is a good

approximation to neglect the terms in the single-particle operators which

change the number of phonons. In that case the most important effect of the

long range force is to depiste the amount of one quasi-particle state in the
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wave function. In this approximation, the relationship between the single-

particle lifetime, and the lifetime in states Eq. (54) is

I I

"44f (87)

with this retardation factor D being approximately

(88)

In Eq. (88) the upper sign holds for electric and the lower one for magnetic
J

transitions. The coefficients Cjoo are the no-phonon components of the

wave functions of an odd-mass system of spin j, obtained from Eq. (47).

The most useful data for systematic studies of electromagnetic transi-

tions in the one quasi-particle states is that of the isomeric transitions,

especially the M4 and E3 transitions. Let us first consider the 144's.

The single-particle transition rates have been calculated by Moszkowski

and others. For M4 transitions the theoretical single-particle transition
S~29

probability is approximately

. ..... (8 9 )

with C(M4) a constant proportional to the radius parameter, A- , to the

sixth power, and equal to 1.56 x 10-5 or 2.86 x 1075 for neutrons or

protons, respectively, for a choice of r° = 1.1 x 10"13 cm. (j$,

is the "statistical factor" and A is the mass number. The experimental

values for the transition probability Pexp is found in terms of the
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experimental half-life, T conversion coefficient, a , and the fraction

of M4 involved in the transition, F,

(90)

The experimental results are given in terms of the reduction factor

P0 r'

DEKXP -(91)

Results are given for the M4 transitions in our regions in which the half-

lives have been measured. In most cases F is known from the experiments,

but in a few cases it is estimated from theoretical considerations. In a

number of cases the internal conversion coefficients have not been measured

and the calculations of Rose30 have been used. If only the K and L

conversion coefficients are known, the total conversion coefficient is taken

to be a = a K (1 + 1.3 aL/a.K) •

The most striking feature of the systematics of 144 transition rates

is their constancy, which was first pointed out by Goldhaber and Sunyar 3 ,

for none of the measured rates differs from the single-particle estimate by

more than a factor of about ten. From Eq. (88) one sees that the pairing

part of the reduction factor is (U U4 + ViV 4) 2, which tends to be constant.

Since the magnitude of the one quasi-particle component in the states being

considered is usually at least fifty percent, the theoretical reduction factor

D will also tend to be constant. Let us now look in detail at the several

regions to see if not only the constancy produced by the pairing correlations

shows up, but also the effects of phonon admixtures.
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In Fig. 37 is contained the information about the isomeric transition

between the i13/2 and f5/2 odd neutron transitions in the Pt, Hg, and

Pb isotopes. In the Pb isotopes the most important effects are due to the

pairing correlations. As one removes particles from Pb2 0 7 the vibration does

become a little softer, tending to reduce the calculated transition rates

a bit faster than when the phonon effect is neglected, but the experimental

information just shows the constancy expected from the pairing effects. In

any case, the fact that the Pb207 D is less than that of Pb2 0 3 is veryexp

hard to understand.

Following the Hg isotopes from mass 195 to 199, both the 13/2 and 5/2

states are filling, and the pairing part of the reduction factor increases.

This is partially offset by the phonon factor, which decreases, resulting

in a slowly increasing D, which is in agreement with experiment. In the

case of the Pt isotopes, the pairing factor is increasing at nearly the

same rate in isotopes 193, 195, and 197 as the Hg isotopes, for the same

neutron numbers are involved, but in this case the phonon factor is quite

strongly increasing. As a result the theoretical reduction increases in

the Pt isotopes much more strongly than in the Hg, a fact which seems to be

supported by the experimental evidence.

There is a great deal of experimental information concerning the neutron

h11/2 and d3/ 2 levels from the M4 transitions in the Sn, Te, Xe,

and Ba isotopes as shown in Fig. 38. In going from smaller to larger mass

numbers in these isotopes one is proceeding from 67 to 81 neutrons in the 50-82

neutron major shell. Since the first fourteen particles in this shell mainly

occupy the g7/ 2 and d / 2 levels, one is essentially going from unfilled

h11/2 and d3/ 2 levels to filled ones. However, due to the fact that these
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two levels are rather closely spaced, the factor (Un11 2U3 1 2 + Vl12V3/2) stays

quite close to unity. Therefore almost any variation in the theoretical

results must come from the changes in the phonon admixtures. In the sequence

of six isotopes Te123-133 experimerLal results show a general increase of

the Dexp factor. In the theoretical calculation there are two competing

effects, since the C3/2 coefficient increases from about 0.8 at Te121

to unity at Te ,wC3 3/2 00 cli/2 has a maximum at mass numbers 125tountyatTe3, while the 1/0

and 133. Although the detailed variation which is predicted by the theory

does not seem to show up, the general tendency for the nuclei to become

stiffer to vibration and thus contain less phonon admixture as one approaches

the 82 neutron number leads to a general increase of the theoretical D factor

which is consistent with the experiments.

The theoretical results for the sequence of isotopes Xe 129-135 show -

similar dip at the 131 mass number, due to the minimum in the C11/2 00

coefficient, with a general increase thereafter to the case of 81 neutrons.

The experimental results are in good agreement, even having a minimum at Te13 1 .

Finally, the three isotopes Ba133-7 have an experimental reduction factor

which increases sharply, which is in agreement with the strong phonon changes

which occur with 56 protons.

In Fig. 39 one finds the study of the Pl/ 2 -g 9 / 2 proton transition

revealed by the Y, Nb, Tc, and In isotopes. Since the protons are involved,

the pairing factor remains almost constant and just helps to determine the

general magnitude for each element, so the variations in each element are

mainly due to the phonon. One striking result is the strong maximum in the

three Y isotopes at the 50 neutron closed shell. This can be explained

by the fact that the phonon admixtures increase as one leaves the single

closed shell case, as the theoretical curve shows. For the four Nb isctopes
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one is adding neutrons to the 50 closed shell, starting with the single

closed shell Nb91 case. Therefore, the theoretical results display a

decreasing magnitude for this D factor, which is in agreement except for

the very uncertain Nb93 point. In the three Tc isotopes with mass numbers

93-97 one sees this effect quite clearly in both the theoretical and experi-

mental reduction factors. Finally, for the In isotopes the pairing factor

is constant and the phonon admixture is also almost completely unchanged as

the neutrons increase from 64 - 68, so the Dtheor remain constant in

In 1 1 3- 1 1 7' in agreement with Dexp.

Another interesting thing in this region is a pairing force effect

for the three single closed shell N = 50 isotopes j8 9, Nb9 1, and Tc 9 3 .

The minimum in the reduction factor seems to come from the change in the gap

at 41 particles, as was discussed in Ref. I. Finally, there is a little

information concerning the neutron pl/ 2 - g9 / 2 M4 transition. From Fig.

40 one can just conclude that the experimental and theoretical results are

consistent.

From Figs. 37-40 one sees that for a choice of the radius parameter

somewhere between 1.0 and 1.1 f. the magnitude of the experimental vs. theor-

etical reduction factors is in agreement. le can conclude that this extensive

information on 144 transitions seems to give good evidence for the accuracy

of the wave functions which result from this method.

The experimental data on E3 transitions is not so extensive as the M4

data, and it turns out not nearly as useful for this work. The main reason

is that the best systematics concern the transition between the 7/2+ state

and the 1/2- state for isotopes in which the odd particle is in the 28-50

shell. These are just the cases with which this method seems to be least

able to deal, at least without including the three quasi-particle states (see

Cpt. III). Therefore we do not attempt to calculate these transition rates*
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The only systematic data which we can treat involves the neutron

11/2 d51  109-UJ 1l1 127
h11/2 - d5/2 E3 transitions in PdI , Cd , and Xe . In fact, this

is an interestirt sequence, for the neutron Fermi level is crossing between

the two levels at about N = 63. Therefore, one can expect a sharp reduction

in the D factor at this point, since the factor (U U - V V) goes approx-

imately to zero there. The very small transition rates32 compared to the

single particle values for Cdlll and Pdill seem to be correlated with this

theoretical prediction. It is also interesting to note that noreof the

E3 transitions between the 7/2+ and 1/2- states mentioned in the preceding

paragraph have these very strong reductions, indirectly supporting the

conjecture that thosestates contain other admixtures than the pairing picture

would predict.

There are numerous other lifetimes measured in the spherical odd-mass

isotopes. Although there is not so much in the way of systematics, there

are some interesting cases. Of special interest are some of the E2

transition rates. Here one has the tendency for the reduction of the con-

tributions from the single quasi-particle states, but enhancements arising

from the phonon admixtures. Thus, e.g., recent experiments on Sb123 which

show an enhanced E2 transition give evidence that g7/2 and d5/2 states

contain considerable admirdtures of phonon states 3 2 .

B. Even-Even Isotopes

1. The One Phonon to Ground State Transition

The most extensive data on electromagnetic interactions in the even-even

nuclei is on the B(E2) values for the transition from the lowest 2+ state
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to the ground state. In Cpt. II this was defined as

A t

S -2. ) -. o

(92)

Since in all of our calculations we take the three long range force parameters

equal X- = i = the B (E2) can be written in the simplified

form

~ ~ .~ ()N~,VJUJ (-341)(Co) A<i' iJ> 2. M +E31)

(93)

where

(94)

The theoretical values of the B(E2)ts seems to be in reasonably good agree-

ment with the experimental data 33. One can see that there is a general

tendency for the calculated B(E2)ts given in Table VI to become increasingly

larger than the experimental ones as the vibration gets softer and one approaches

the deformed regions.
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2. The Crossover 2+ Two Phonon to Ground State Transition.

In recent years there have been many measurements of the B(E2)1s for

the transition from the second phonon 2+ state (referred to hereafter as

the 2' state) to the O+ ground state. In the linearized QRPA theory we

have applied here this transition is forbidden, which is in agreement

with the small B(E2) value compared to the B(E2). However, one of the
21'-.>0 2.*0

promising features of this method is the relative ease with which some

corrections can be made. For these transitions it is rather straightforward

to carry out the necessary corrections to the QRPA approximation.

The crossover B(E2) is defined

B(E 2) o,(95)

o --*2!

F is a normalization constant which takes into account the deviation of

the & operators from bosons for the two phonon states. This factor can

be quite different from unity when the vibrational states are low in

energy. Since the number of quasi-particles differ in the zero and two

phonon states by zero, four, etc. the Al parts of the quadrupole operator

cannot lead to the transitions. Therefore, the'l parts of the operator,

which do not contribute to the B (E2)[s, are entirely responsible for theO-,ý2+

transitions, which we can thus expect to be of the order of single-particle

magnitude. We need the matrix element <YP{0f El 61) t - Y>
in which the operators have been vector coupled to total angular momentum

zero. Applying the commutation rule given in Appendix I, Eq. (A4), plus
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the condition B10,-90 one readily finds that

I B B (96)

Therefore, the reduced lifetime for the direct crossover transition is

* ZOF e (Ur , ->/"
0 fUV (97)

J,

The results shown in Table VII are calculated by choosing F=I and

taking the effective charges of the proton and neutron to be ep = 2e
eff

and en = e (column two), and for comparison eP = le and en = 0
eff eff eff

(column three). From Eq. (97) it is evident that the theoretical results

are sensitive to the parameters both because of the cancellations due to

the factors; (UjUJI-Vjj,) and because of the interference between neutrons

and protons, which is illustrated by the comparison of columns two and

three. The theoretical values are frequently an order of magnitude

smaller than the experimental results. 3 3 One important reason for this

is the error in the choice of unity for the normalization factor F,

which can change the results by a factor of two according to rough

estimates. However, since these transitions are of single-particle

magnitude an accurate estimate of these B(E2)'s requires the use of more

detailed properties of the wave functions and An investigation of other

effects which might be important in some cases.

For the region 28SZS4O; 285N_•50 the theoretical B(E2)

values were also calculated including the f 7 / 2 protons and neutrons

from the shell below. These results are not included in the table, but

there wav a large difference in the results indicating the sensitivity of
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the calculations to the parameters, especially in this region. Since

these transitions are essentially of single-particle type, the results

can be expected to depend much more upon the details of the nuclear struc-

ture than those for the one-phonon B(E2). In particular, we expect that
0+-2+

with more systematic emperical data there will be more scatter in the

experimental values for these transition rates than for the transition rates

found for the one-phonon to the ground state transitions. Of course this

simple treatment of the two-phonon states cannot be expected to be very

accurate. Moreover the general tendency for the B(E2)'s to be so small

in this calculation indicates that the corrections are quite large, and

that in fact the treatment of the second phonon state as H1  0 o is

not very accurate.

3. The Ml Admixture in the Two-Phonon 2+ to One-Phonon Transition

From the magnetic moment operator, Eq. (59), one can see that in

the matrix element needed to calculate the MI transition between the

two-phonon 2+ (2') state and the one-phonon state

<T0 Ar[ ~] . (98)

only the 71 terms contribute. However, the calculation of this matrix

element is rather intricate. In this case the commutation rules Eq. (A3)

and (AQ) along with the condition B fo - 0 are not sufficient to

evaluate the matrix element, and one is required to make statements about

the magnitude of rather complicated terms. Because of the accurate data

it is important to carry out this calculation, but we do not do this here
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because it is not in the spirit of the rest of the calculations. For the

same reason we do not calculate the change in the value of the cascade

B(E2)'s of the 2'-•2-)O transitions from the QRPA value.

4. Transitions in Two Quasi-Particle States

As soon as one leaves the single closed shell isotopes, the

difficulty in obtaining spectroscopic information has resulted in the

situation that there is actually very little information about transitions

in the quasi-particle states beyond those studied in Ref. I. With new

experimental apparatus and techniques, one can look forward to the

possibility of systematic studies in the future. One interesting case

has been recent measurements of a highly forbidden E2 transition in

SnI 1 8 and Sn 1 2 0 in states which should be rather pure quasi-particle

states, showing the particle hole cancellations predicted by the pairing

corrections 34 .

VIII. BETA-DECAY

Nuclear beta decay rates have been used in the past to help

determine nuclear spins and parities, and moreover when the spins are

known and the type of decay determined, the rates may be related to the

nuclear state involved.

A. Beta-decay Matrix Elements -- Odd-Mass

In the same fashion as with electromagnetic transitions, the effect

of pairing correlations on the P decay nuclear matrix elements may easily

be determined. The simplest case to consider is a transition between two
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one-quasi-particle states. This will be a transition between an odd-proton

and an odd-neutron nucleus, and will thus be between a neutron one-quasi-

particle state and a proton one-quasi-particle state. The P-operator

Co for the nuclear matrix element is of single particle type ( b b

or ( ) depending on whether N-*P or P-+N in the transition. The

initial state is of the type & I1,> or LI k,0 depending on

whether the neutron or proton number is odd in the initial state. The

final state is then of oposite type. The matrix element M may be evaluated

in terms of the single-particle matrix element MS.P. by performing the

quasi-particle transformation on the operator . (See Eq. (9)).

Four cases may be distinguished depending on the nuclear species

involved.

1) N-4P odd jumping, ( odd N even Z)-+(N-I,Z+I), M=UN Up MS.P.

2) P-+N odd jumping, ( even N odd Z)-*(N+I,Z-I), M=UNUP MS.p.

3) N-,P even jumping, (even N odd Z)-*(N-I,Z+l), M = T VNVP MS.p.

4) P-).N even jumping, (odd N even Z)-i.(N+l,Z-1), M - + VNVP MS.p.

In 3 and 4 the sign is plus or minus depending on whether the operator is

odd or even under time reversal. The above expressions differ from the

reduction factors derived for electromagnetic transition owing to the

fact that here 1 and 3 or (2 and 4) correspond to different transitions,

while in the electromagnetic case, where the same particle merely changes

levels, the corresponding 1 and 3 or (2 and 4) both contribute to the same

transition, i.e. the even jumping and odd jumping both contribute to the

same transition.
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An absolute comparison of these reduction factors with experimental

data would be quite difficult for medium to heavy nuclei. However, for

a group of one-quasi-particle transitions all between the same quasi-

particle levels, the entire dependence of the nuclear matrix element on

the particular nuclear species (i.e. on A) should be contained in the

reduction factors, the single particle matrix element being common except

for small changes due to the slow change in the shell model well shape

with A. Then for such a group of transitions (of allowed type) the comparative

life (ft) value is proportional to M-2 so we should have aside from the

statistical factor (see below)

ft _C (UNUP)" 2  cases 1,2, odd Jumping (99)

ft OC (VNVP)- 2  cases 3,4, even jumping (100)

One such group occurs in nuclei I15:- A-S141 between the proton

d 5/2 level and the neutron d 3/2 level (see Fig. 41.) The figure shows
2Ji+l

experimental log ft. values minus log 3 and compares them with the
C C

theoretical reduction factors log C.and loge- * The normalization

C is chosen for each level pair to fit the data for both the odd mass and

even mass transitions (see section B below). On each plot a small arrow

marks log C. The statistical factor (2Ji+l)/3 is chosen to make the

corresponding factor for the 1+ to 0+ transitions discussed below equal

to unity. Most of the experimental ft values correspond to odd jumping

transitions. This is in general accord with the upward trend of log ft

with increasing A since filling levels means decreasing U's and thus

decreasing M and increasing ft. The few even jumping transitions which

occur for large mass isotopes exhibiting this transition ha" )wer ft
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values than the neighboring odd jumping transitions. This is reasonable

since both shells are nearly filled for these isotopes i.e. V> U and

M even>M odd-jumping.

For other level pairs there is much less systematic information.

For 57A:A67 there are a few cases of p3/ 2 - P3/ 2  transitions (see

Fig. 42.) It is difficult to see the effect of the reduction factors with

so few cases. Also, the excitation energy is high in some of the cases,

involving a particle from the next shell, so there may well be appreciable

three-quasi-particle and phonon admixtures to the wave function in those

cases.

For 69_5 A•_87 there are about a dozen cases of a transition between

a proton p312  level and the neutron p1/2  level (see Fig. 43). For

these, the trend with one exception is (with increasing A) increasing ft

value for odd jumping cases and decreasing ft value for even jumping as

expected. For the exception, a particularly fast even jumping case

Ge~l 1 ) G71( 332G 3(Z -) 31 Ga4o0 - log ft = 4.3, the low ft value may be due

to exceptional purity (small phonon admixture) of the wave functions

owing to the proximity of the nearly magic neutron number, 40. The

agreement here is only qualitative, but the normalization was chosen to

fit the corresponding even mass cases as well (see below).

Finally there are for I0OI-A 1lli a few cases of a transition

between a g9 / 2  proton and a g7/2 neutron (see Fig. "). The normali-

zation of the theoretical curves was chosen as a compromise to fit these

data and the more numerous even A (see below) cases.
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The comparisons made above are valid only if the phonon component

(or other 3 or more quasi-particle components) of the wave functions may

be ignored or assumed to have an effect Independent of mass number.

Otherwise, the matrix elements to this part of the wave function must be

included. However, such a calculation can not be done without essentially

making an absolute evaluation of the matrix elements to various single

particle levels as the different levels will come in with different

reduction factors. Thus we will not attempt such a calculation here.

There is also some systematic data for unique 1st forbidden

transitions. For 89 •A!597 there are a few transitions between a

proton p1 / 2 level and a neutron d level (see Fig. 45). Even
1/2 5/2

if the ft value can be used as a measure of the relative magnitudes of

the matrix element, there are too few data to see a trend.

For 1234 A I 137 there are a few transitions between a proton

g 7/2 level and a neutron h,,/2 level (see Fig. 45). Once again

there are too few data to believe the trend shown by the experimental

points although the even jumping cases here are all lower than the odd

jumping cases.

B. Beta-Decay Matrix Elements -- Even Mass

The large majority of even mass decays procede from the ground state

of an odd-odd nucleus to the 0+ ground state or the 2+ or higher

vibrational state or a two quasi-particle state of an adjacent even-even

nucleus. By far the most prevalent systematic data is for a transition
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from a 1+ state by allowed 0 decay to both the 0+ ground state and

first excited 2+ state. For 27 transitions from 62- At-136 the

average log ft value is 4.9 for the 0+ transition and 5.5 for the 2+

transition. The spread of values is quite small (R.M.S. - 0.4 for 0+ case).

The initial state in this case is primarily a two-quasi-particle
tI

state of the type (0ýwc )+140> or a combination of such states. For

the 0+ ground state transition the final state is primarily the quasi-

particle vacuumwnPo>. Thus we must distinguish two cases

1) N-.P Odd-Odd -3o Even-Even M=UNVP MS.p. (101)

2) P--.N Odd-Odd -+ Even-Even M=-VNUP MS.p. (102)

where M".P. I1hi>. The operator here is the spin operator

and the neutron and proton levels must be spin orbit partners. If in

any cases the two-quasi-particles forming 1+ were not spin orbit partners

i.e. same f value, the transition would be l forbidden and presumably

have a larger ft value. There are three groups of nuclei corresponding

to different probable levels for the neutron and proton (see Figs. 43,

44, and 41.)

Average
Proto• Level Neutro• Level log ft

62 -6 AS- 82-- 4.9.5

104es A! ll8 g9 g 2 4.73

1181 AS 136 d4 d 2  4.98
2 2

The reduction factor UV does not vary too much as U is a decreasing

and V an increasing function of A. The single particle matrix element



87

>!

of C' does depend on the I value LJIIIL, >. being

larger for large . Thus, the g 2 2 transitions should be fastest
2 g2

as they are. The above argument makes the dubious assumption of the same

overlap for neutron and proton wave functions for each set of quantum

numbers. It also assumes pure quasi-particle wave functions. The

constancy of the ft's indicates that any deviation from this picture

must have a uniform effect independent of mass.

Exactly the same reduced single particle matrix element of T'occurs

for these 1+ -- 0+ transitions as in the one-quasi-particle -+ one-

quasi-particle transitions previously described for the same N and P

states as those making up the 1+ level. Thus, the theoretical reduction

factor curves for corresponding single particle states are plotted with

the same normalization in the odd-even -* even-odd cases as in the

corresponding odd-odd -+ even-even ploto. It is seen that this same

normalization works fairly well in both the even and odd mass cases

implying that the reduced single particle matrix elements are the same

in the two cases. This is a nice verification of the quasi-particle

picture for odd mass nuclei and the proton and neutron-two-quasi-particle

picture for odd-odd cases. It shows in fact that the odd-odd quasi-

particles are similar to the more familiar odd mass quasi-particles.

The "Experimental Single Shell Model Particle Estimate" may be

obtained by setting the reduction factor equal to unity. The value is

marked on each figure by an arrow. This lifetime is about ten times the

value obtained (from the neutron and 014 decay rates) on the assumption
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of perfect overlap between the neutron and proton orbital wave functions.

The difference is largest for the heaviest nuclei. This discrepancy may

be due to lack of overlap between the pure N and P shell model states,

the omission of coupling to Phonons, and the omission of N-P shortrange

forpes. 35

The matrix element 1+ ---- 2+ phonon state may easily be written

in the QRPA approximation, but terms vA th different reduction factors for

different quasi-particle levels are involved requiring an accurate knowledge

of the N - P overlap of the different wave functions. For the 1 phonon

transition for an N --* P case the matrix element is

V V V,, (103)

Since N', PI are spin orbit partners and for the cases considered there

is also a large amplitude for N andP tobe spin orbit partners, the

main contribution to the matrix element comes from those terms of the

phonon amplitude with two identical protons or neutrons (in the initial

P or N quasi-particle state) coupled to 2+. This will be but a

fraction of the phonon amplitude, leading to a reduction of the matrix

element compared to the ground state transition. The angular momentum

recoupling makes a further reduction.
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The allowed transition to the two phonon 2+ state may also be computed.

This involves corrections to the Sawada commutation rules for the phonon

operators and should thus be expected to give larger ft values than

those for the one phonon transition. This is in agreement with the

experimental observations for higher energy 2+ states.

All of the calculations for Figs. 41 - 45 have been made with the

assumption of pure quasi-particle states. It is not easy to see apriori

how the phonon interactions change the results because this depends upon

which quasi-particles are admixed. However, there might be expected a

tendency for the isotopes closer to the closed shells to have smaller ft

values in some cases, which seems to be born out in some of the data.

IX Conclusions

For nuclei with proton numbers between 28 and 82, with the exception

of the well-known deformed nuclei, we have calculated the low-energy

states in a shell model with a pairing force between the neutrons and

protons separately and a quadrupole force between all pairs of particles.

The Bardeen approximation has been used to introduce the quasi-particles,

which approximately diagonalize the pairing interaction, and the quasi-

particle random phase or dilute quasi-particle approximation has been

used to introduce the phonons, which approximately account for the inter-

action between the quasi-particles due to the quadrupole interaction.

Studies are then carried out to see if the low-energy properties can be

at least semi-quantitatively understood in terms of these basic types of

excitations.
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In the even-even nuclei the only states for which there is systematic

experimental data are the collective states. For these nuclei one can

approximately trace the extremely rapid drop of the first 2+ (one-phonon)

state as one goes from the single closed shell cases until the energy of

these vibrational levels is about one-fourth of the gap. At about this

point the vibrations seem unstable in the theory and the accuracy is lost

due to the large average number of quasi-particles mixed into the ground

state. As one adds particles above the N--82 closed shell there is a

very rapid drop in the phonon energy until at about neutron number 86

the spherical shape bucomes unstable. Thus for any reasonable choice of

parameters the deformation is expected to appear rather suddenly at

around mass number 150. The transition into the deformed region above

mass number 190 is much more gradual, so that one can make the theory

predict, e.g., either that all of the Pt nuclei and say Os1 9 0 and Os1 9 2

are spherical or that all of the Os nuclei are unstable and only the

heaviest Pt nuclei are spherical, with moderate changes in the parameters.

Other possible regions of instability of spherical shape occur for

either protons or neutrons near the middle of the g; shell and for the

neutron defficient Xe and Ba isotopes. Ii. these cases the tendency for

deformation does not seem so strong, and with reasonablq changes in the

parameters one could find consistency with a spherical shape.

For the odd-mass isotopes the two basic excitations, the quasi-particles

and the phonons, both appear in the states which we consider. Although for

the single closed shell isotopes the quasi-particle states are the only ones

for which there is systematic information, the states with one phonon

excitation enter the picture rather quickly when one has both neutrons
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and protons outside of the closed shells. For nuclei with mass numbers

100- A!5150 and 190! A- 208 the effects, often large, of the quadrupole

interaction upon the quasi-particle spectrum improve the agreement with

experiment in almost every case. The positions of levels which arise

from pure quasi-particle states, and the energy at which one begins to

see states which arise from one phonon and one quasi-particle states

(in the absence of the quasi-particle-phonon interaction) occur at

approximately the energies given by experiment, within the accuracy

expected by the simple forces and aproximations used in this work. The

coupling scheme seems to be maintained especially well for the isotopes

from 50 Sn to 6 0 Nd and one can follow a number of interesting details of

the spectra.

In the region below the Sn isotopes the general coupling scheme seems

to be completely adequate only for cases in which at least one kind of

particle is near the 28, 38, 40, or 50 closed shell. The most striking

discrepancy is the appearance of low-lying 7/2+ states in nuclei which

in a pure shell model would be described as having three or five particles

or holes in the g; level. This suggests that either the three quasi-

particle states are playing an important role or that the strong quadrupole

interaction makes necessary a quite different coupling scheme. In many

cases for Z"50 and N Z50, such as the Ag isotopes, the other levels can

be accounted for within the accuracy of the methods but at this point one

is very uncertain about the accuracy of the wave functions for these levels.
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There is also evidence for the need of a neutron-proton interaction

in addition to the quadrupole interaction. In the even isotopes this is

suggested by the fact that the phonon energies for the single closed shell

isotopes cannot be fit with the same quadrupole parameters as apply for

the cases with both neutrons and protons. The clearest evidence in the

odd-mass isotopes is found in the cases with one and three particle away

from the single closed shells and in general tendencies for motion of

certain effective single-particle levels with changes in the mass number.

In addition, for the isotopes between Ni and Sr the inclusion of a neutron-

proton short range force seems to be even more important because of the

tendency for neutrons and protons to be in the same J-levels.

Although there is a large body of accurate data on the magnetic dipole

moments, one does not seem to be able to gain from this much systematic

information about the details of the wave functions for spherical nuclei.

One can see the effects of the seniority three admixtures, introduced by

the short-range force, moving the values of the quasi-particle moments

away from the single-particle valuesa but the results are rather insensi-

tive to rather large admixtures of phonons. However, one interesting

result is that the phonon admixtures can account for the deviation of the

PJ/2 nuclei from the single particle values, which is not possible with a

S-function interaction.

There is less systematic accurate data for the quadrupole moments

and much more uncertainty in the calculation due to the large effects of

the quadrupole force and the strong dependence upon the parameters. Using
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the no-phonon and one-phonon parts of the wave functions, the general

systematic experimental trends of these moments are followed by the

theoretical calculations, indicating that the most important physical

effects seem to be accounted for. As more data accumulates, more nearly

accurate calculations with further studies of the dependence upon the

parameters would be useful.

The transition rates for the one-phonon E2 transitions are generally

consistent with an effective charge of 2e for the proton and le for the

neutron, but tend to become too large as the vibrations become-softer.

The cross-over transitions from the two-phonon 2+ states are much more

sensitive to the parameters, depending upon the microscopic make-up of

the collective states in terms of the shell model particles. However,

further studies are needed in order to calculate accurately these as well

as other effects such as the MI-E2 admixtures in terms of the microscopic

structure.

The other electromagnetic transitions for which there is good systematic

data and which apparently can be easily interpreted are the 44 transitions

in odd-mass nuclei. For these the effects of the pairing correlations in

mixing particle and hole transitions tend to maintain the single-particle

transition rate and are in agreement with the systematic trends. One can

also see the influence of the phonon interactions which can account for the

further systematic reductions in the transition rates which are found as

one leaves the single closed shells. In addition there is a large body of

systematic data on the P-transitions involving only the a-operatcr, and the
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effects of the pairing correlations are 'In agreement with the systematic

trends. By further calculations of transition rates with the states com-

posed of quasi-particles and bosons one will know in greater detail the

accuracy of the coupling scheme which has been used in this work.
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APPENDIX I

In this appendix we give the expressions for quasi-particles vector

coupled to form tensor operators with the usual (Condon-Shortley) phases.

The double quasi-particle creation operator of rank L is defined as

(Al)
+ ) + A ' r t . j .'

The quasi-particle "scattering" operator of rank L is defined as

•LM j. +, AM +, t dj

•, = > [2:-( 0(jW0j46
74.0

(A2)
•.,+ .j• ,,, • .- •÷ +/,+", • t . •Cb•J, L.

+ ~ ~ ~ 14 a J ha 2 rileAI

The commutation rules which are satisfied by these operators are

(A3)
+4 ternis i 71, T

and 1 , L LS•' 5  W(SJL S,s)
L a ,•. L M AA : [(7 . +,..LA+/ 3MsS

A(A3

It is also possible to work directly with quasi-particles defined

in terms of Condon-Shortley phases.36
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In this appendix tables are given for the solution of the pairing

equations Eq. (4) and for the lowest few wave functions resulting from

matrix diagonalization of the odd-A odd nucleon interacting with the

phonon Eq. (47). A table is presented for the odd particles being in

each of the major shells 28 - N : 50, 50 : N :S 82, and

82 :E N ! 126.(T.,]esA -9)

Within each shell the single particle energies are given a smooth A

dependence of the following form:
Cý(A) =C?(A.)(Ao1A)3 , o'j (A°1A)1[1-(A1A°)I]÷•313•

(BI)

The first term gives the general A-1/3 compression while the second

term applies to spin orbit pairs. If in the shell both J = 2t +. states
2

are present:

= - )(B2)

-+ (B3)

If only one of the levels is present in the shell:
2.

Ott. +i 7 A,, t,(•

or_ o •r _A- - AO, 1. (B5)

In addition in some regions, a special N or Z dependent shift was

given to a level. This is indicated by the term A ej (Z, N). In

order that the single particle levels may easily be reconstructed by

means of these formulae, or roughly by interpolation, the values of
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E:J(A) are given for the beginning and end of each region. Furthermore,

the special shifts A E j will be explicitly indicated for each region.

The value of G = const. x A-1 is also listed for each region.

In the tables the first column lists the isotope species with its Z

and N values and the next column the mass number. Columns 3 and 4 list

the X and A from which Ej , Uj , Vj etc. may be computed.

The remaining columns list the no-phonon and one-phonon amplitudes (See

Eq. 54) of the wave function of the lowest state or states of spin j

listed in column 5.
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APPENDIX III

We list in this appendix the matrix elements which are used in

Cpt. V for the calculation of the magnetic dipole moments.

1. Matrix elements of the phonon angular momentum R z
t

:0 (ci)

2. 3(j+'-jjI) j

(C2)
(Pt'o[ 1,(0Bb)J•i. I R• I[ f. 8o')l.7.

2! (c3)
- J(J+I) StS3-1

2. Matrix elements of the particle part of the magnetic moment

operator:
,+

<a6Lj >N.,•• /,.,c•b=J~

+ i-' +) -e 4 ')J25  'F"c•+'J(JrJ . - (c4)

(,*or%,B ]ji.hjpl•. i Jj~ .(,> ) +•)J(+, (c5)

N. • fcz P, 7,(•- + •t+ ]j- m .. { -) -(

-j,(j,.g)4J(34.iJ-.(J + ) (C6)

t t ttJ("n'..d•• •+ (Ba e, J I /.4l./,. IE [t.,- ( t)]j• %>
B)e

: "l(u,,ao •-,..,, , [(•*•+J" ")(:+•-J ( "
, --. --,. (---v (•..,),+) •-,.
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Table A-1 28 • Z S 40 31 -N ý 49 G=24/A

The single particle neutron levels are (Ej in Mev.):

f7/2 P3/2 f5/2 P1/2 99/2

-4.00 0.00 0.00 3.00 4.00 A = 58

-3.27 0.11 -0.26 2.37 3.68 A = 89

* For Ni the f7/2 level was not included and G was increased to 26/A

Isotope A CN di ci C3 Ci
JCo 7/212 5/212 3/2 12 1/2 9/212

28 Ni 31 59 -0.69 1.33 3/2 .77 * -. 20 .36 .37

5/2 .76 * .39 .18 -. 35

28 -- 33 61 -0.14 1.51 3/2 .88 * -. 06 .20 .37

5/2 .89 * .10 .05 -. 35

28 -- 35 63 0.45 1.48 3/2 .9 * .17 -. 30 .24

5/2 .89 * -. 35 -. 14 -. 20

30 Zn 35 65 0.52 1.64 3/2 .79 .34 .14 -. 35 .19

5/2 .81 .14 -. 42 -. 25 .6.18

30 -- 37 67 1.27 1.38 3/2 .73 .31 .19 -. 49 .04

5/2 .73 .12 -. 53 -. 32 -. 03

32 Ge 39 71 2.17 1.30 9/2 .61 .68

1/2 .68 .36 .50

32 --41 73 2.95 1.28 9/2 .62 .68

1/2 .67 .39 .48

32-- 43 75 3.48 1 .29 1/2 .68 .39 .47

32 -- 45 77 3.90 1.19 1/2 .69 .39 .45

34 Se 41 75 2.94 1.22 5/2 .38 .07 -. 32 -. 22 .67

34 -- 43 77 3.46 1.24 1/2 .70 .38 .46

34 -- 45 79 3.88 1.16 1/2 .75 .37 .42

34 -- 47 8 4 4.23 .95 1/2 .81 .34 .38

36 Kr4 3 79 3.43 1.21 1/2 .68 .39 .47

36 -- 45 81 3.85 1.13 1/2 .79 .35 .40

36 -- 47 83 4.20 0.92 9/2 .83 -. 52

.36-- 49 85 3.71 0.00 9/2 .66 -. 70

38 Sr 49 87 3.69 0.00 9/2 .94 -. 33

.4O Zr. 49 89 3.67 0.00 9/2 .99 -. 10
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Table A2 36 _ Z -5 50 51 t N t 75 G=23/A

The single particle neutron levels are ( 61 in Mev)

d 1 2  g 71 2  1/2 h,11/2 d3 / 2

-0.14 2.75 1.44 2.60 3.32 A = 87 (Z = 37)

0.00 0.80 1.30 2.50 2.80 A = 120o

Compared to the A values the g7 / 2 level is given a special shift

4E 7/2 = .14 (50-z) Mev.

Isotope A 6! 3 Cj CC / C
joo 7/212 5/212 '/212 1/212 11/21

36 KR 51 87 -0.14 0.00 5/2 .83 -. 05 .42 .08 -. 28

3 8 SR 5 1 89 -0.13 0.00 5/2 .99 -. 02 .11 .03 -. 07

40 ZR 51 91 -0.12 0.00 5/2 .98 -. 03 .16 .04 -. 12

40 -- 53 93 -0.26 0.81 5/2 .95 -. 05 .15 .08 -. 24

42 Mo 53 95 -0.26 0.81 5/2 .93 -. 06 .19 .08 -. 27

42 -- 55 97 0.16 1.01 5/2 .93 -. 06 -. 24 .08 -. 23

44 Ru 53 97 -0.27 0.81 5/2 .92 -. 07 .21 .08 -. 28

44 -- 55 99 0.16 1.01 5/2 .89 -. 09 -. 23 .11 -. 33

44 -- 57 101 0.57 1.13 5/2 .78 -. 05 -. 57 .10 -. 09

4-- 59 103 0.96 1.25 5/2 .59 .09 -. 56 .01 .42

46 PD 57 103 0.44 1.13 5/2 .85 -. 05 -. 47 .08 -.14

46 -- 59 105 0.83 1.26 5/2 .76 .06 -. 56 .05 .21

46 -- 61 107 1.14 1.31 5/2 .61 .12 -. 51 .02 .47

46 -- 63 109 1.44 1.32 5/2 .53 .11 -. 47 .01 .56

46-- 65 111 1.69 1.32 5/2 .49 .10 -. 46 -. 01 .57

48 CD 59 107 0.70 1.27 5/2 .84 .05 -. 51 .06 .06

7/2 .82 .38 -. 03 --. 32

48 -61 109 1.01 1.30 5/2 .76 .12 -. 50 .04 .32

7/2 .91 .15 -. 08 -. 30
1/2 .85 .24 -. 39

3/2 -. 57 .48 .06 -. 33 -. 48

8-- 63 111 1.31 1.31 5/2 .66 .14 -. 45 .01 .49

11/2 .71 .63



* Table A2 (continued)
101

Isotope A >1 A CiC i C iC
joo 7/12 12 3212 12 11/212/2 ,/2 3/21 /, '/2

1/2 .85 .36 -. 32

3/2 -. 61 .38 .05 -. 34 -. 53

48 -- 65 113 1.59 1.32 5/2 .56 .13 -. 42 -. 01 .58

11/2 .72 .62

1/2 .83 .45 -. 24

3/2 .62 -. 25 -. 04 .37 .56

48 -- 67 115 1.86 1.30 1/2 .81 .51 -. 12

11/2 .75 .60

50 Sn 59 109 0.58 1.21 1/2 .93 -. 04 -. 34

50 - 61 111 0.88 1.24 1/2 .93 .12 -. 32

7/2 .98 -. 01 -. 06 -. 18

50-- 63 113 1.18 1.25 1/2 .93 .24 -. 27

7/2 .97 -. 18 -. 08 -. 13

50 -- 65 115 1.49 1.23 1/2 .91 .33 -. 20

3/2 .85 -. 15 -. 01 .36 .32

11/2 .87 .47

50 -- 67 117 1.79 1.22 1/2 .91 .38 -.10

3/2 .92 -. 01 .03 .36 .16

11/2 .91 .40

50 - 69 119 2.07 1.20 1/2 .92 .38 -. 01

3/2 .95 .08 .06 .29 -. 01

11/2 .96 .26

50-- 71 121 2.34 1.17 1/2 .91 .37 .14

3/2 .96 .13 .08 .20 -. 09
11/2 .99 .11

50 -- 73 123 2.57 1.11 1/2 .87 .35 .31

3/2 .97 .16 .08 .09 -. 15

11/2 .99 .06

50 - 75 125 2.79 1.03 1/2 .84 .30 .43

3/2 .97 .16 .07 -. 03 -. 15

11/2 .98 .18



Table A3 52 !S Z !- 60 69 5 N IS 81 G= 23/A 102

The single particle neutron levels are (Ej in Mev):

d5 / 2  g7/ 2  si/2 h1 1/ 2  d3 / 2

0.00 0.80 1.30 2.50 2.80 A = 1200

0.06 0.69 1.23 2."4 2.57 A = 141

Isotope A J CJ CJ
jot 7/ 12 5/212 3/212 1/212 11/212

52 Te 69 121 2.06 1.17 1/2 .77 .56 .03

3/2 .80 .18 .13 .48 -. 19
11/2 .81 .55

52 -- 71 123 2.32 1.15 1/2 .77 .52 .23
3/2 .81 .24 .13 .33 -. 33

11/2 .96 .27

52 -- 73 125 2.56 1.09 1/2 .74 .4 .43
3/2 .87 .26 .12 .12 -. 33

11/2 .99 -. 11

52-- 75 127 2.77 1.01 1/2 .68 .35 .58
3/2 .90 .25 .11 -. 09 -. 28

11/2 .94 -. 34

54 Xe 73 127 2.54 1.07 1/2 .66 .49 .43
3/2 .68 .30 .15 .06 -. 51

11/2 .98 -. 17

54 -- 75 129 2.75 0.99 1/2 .61 .39 .59

3/2 .76 .30 .13 -. 16 -. 41

11/2 .85 -. 49
54 -- 77 131 2.95 0.87 1/2 .57 .30 .68

3/2 .80 .26 .11 -. 31 -. 31
11/2 .80 -. 55

54 -7 9 133 3.13 0.70 1/2 .54 .23 .74

3/2 .85 .22 .09 -. 36 -. 23
11/2 .82 -. 53

54 -6- 81 135 2.63 0.00 1/2 .64 .00 .77



l 7able A3 (continued)
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Isotope A x A . C1  c1  &i c3  C3  C3
00oo 12 /12 312 1/212 11/212

3/2 .99 .00 .00 .00 .00

11/2 .99 .00

56 BA 75 131 2.74 0.97 1/2 .60 .42 .58

3/2 .68 .31 .14 -. 19: -.46

11/2 .80 -. 56

56 -- 77 133 2.93 0.86 1/2 .56 .32 .68

3/2 .76 .28 .12 -. 34 -. 34
11/2 .76 -. 59

56 -- 79 135 3.11 0.69 1/2 .56 .22 .74

3/2 .87 .21 .09 -. 33 -. 22

11/2 .85 -. 50

56 -- 81 137 2.61 0.00 1/2 .79 .05 .61

3/2 .99 .03 .01 -. 04 -. 03

11/2 .99 -. 09

58 Ce 81 139 2.59 0.00 3/2 .99 .04 .o02 -.04 -.04

11/2 .99 -. 10

60 Nd 81 141 2.57 0.00 3/2 .99 .03 .01 -. 03 -. 03
11/2 .99 -. 08
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Table A4 58 Zi- S62 83 - N !87 G =22/A

The single particle neutron levels are (Cj in Mev):

h9/2 f7/2 13/2 P3/2 t5/2 Pl/2

-. 84 -. 12 .63 1.60 2.18 2.76 A = 141

-. 90 .00 .72 1.45 1.78 2.35 A = 207
0

(The figure used a calculation with E h 9/2 one Mev. higher.)

Isotope A A A J C C1  C1  Ci C1  C1

100 9/212 7/212 5/212 3/212 1/212

58 Ce 83 141 -0.84 0.00 7/2 .99 .00 .00 .00 .00

60 Nd 83 143 -0.84 0.00 7/2 .99 .00 .00 .00 .00

60 -- 85 145 -1.39 0.72 7/2 .66 -. 15 .56 .07 -. 29

5/2 -. 32 .74 .18 -. 20 -. 13 .12

3/2 -. 44 .66 .12 -. 30 -. 16

60 -- 87 147 -1.19 0.89 7/2 .58 -. 10 .55 .08 -. 37

5/2 -. 37 .57 .25 -. 28 -. 25 .21

3/2 -.44 .60 .13 -. 35 -. 20
6 2 Sm 8 5 147 -1.38 0.71 7/2 .70 -. 16 .55 -. 07 -. 27

5/2 -. 32 .77 .17 -. 19 -. 12 .11

3/2 -. 46 .68 .12 -. 28 -. 15

62 -- 87 149 -1.18 0.87 7/2 .61 -. 10 .56 .08 -. 35

5/2 -. 37 .62 .25 -. 26 -. 23 .19

3/2 -. 45 .62 .13 -. 33 -. 19
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Table A5 76 'K Z S-82 111 -5 N 'S 125 G = 22/A

The single particle neutron levels are the same as in Table A4

Isotope A J Cj C3  i C C3  C3
Joto 7/212 5/212 3/212 1/212 13/212

76 Oe 113 189 1.28 0.87 3/2 .45 .22 -. 18 .18 .57

76 -- 115 191 1.46 0.80 9/2 .11 -. 01 .80

78 Pt 115 193 1.46 0.80 1/2 -. 58 .60 .46

3/2 .81 .28 -. 13 .00 .37

5/2 .72 .05 .42 .11 -.40

13/2 .65 -. 66

78 -- 117 195 2.64 0.72 1/2 .62 -. 61 -.43

3/2 .85 .30 .00 -. 29 .22

5/2 .85 .06 .29 .01 -. 35

13/2 .66 -. 66

78 - 119 197 2.81 0.63 1/2 .73 -. 59 -. 29

3/2 .85 .26 .11 -.40 .07

5/2 .95 .06 -.01 -. 13 -. 21

13/2 .7U -.64

80 Hg 115 195 1.46 0.80 1/2 -. 65 .57 .46

3/2 .95 .19 -. 09 .01 .20

5/2 .89 .03 .32 .09 -. 25

13/2 .82 -. 53
80 -- 117 197 1.64 0.71 1/2 .70 -. 58 -. 37

3/2 .94 .22 .00 -. 19 .14

5/2 .94 .04 .20 .00 -. 23
13/2 .78 -. 57

80 -- 119 199 1.81 0.63 1/2 .77 -. 57 .23

3/2 .88 .23 .11 -. 36 .07

5/2 .97 .05 .00 -. 10 -. 19

13/2 .74 -. 60

80 -- 121 201 1.98 0.53 1/2 .95 -. 28 .06

3/2 .85 .20 .22 -. 39 -. 03

5/2 .95 .05 -. 23 -. 15 -. 07

13/2 .76 -. 59



Table A5 (continued)

1O6

~Isotope A CX Ai di Ci Ci
joo 7/212 5/212 3/212 1/212 13/212

80 -- 123 203 2.17 0.38 1/2 .97 .14 .16
3/2 .82 .16 .31 -. 35 -. 24

5/2 .91 .05 -. 36 -. 13 .08

13/2 .81 -. 54
82 PB 115 197 1.46 0.79 3/2 .99 .12 -. 04 .01 .10

5/2 .98 .02 .14 .04 -. 13

13/2 .97 -. 26
82 -- 117 199 1.64 0.71 3/2 .99 .11 .00 -. 06 .05

5/2 .99 .02 .07 .00 -. 09

13/2 .97 -. 24
82 -- 119 201 1.81 0.62 3/2 .99 .09 .03 -. 09 .02

5/2 .99 .02 .00 -. 02 -. 05

13/2 .96 -. 20
82 -- 121 203 1.98 0.52 3/2 .99 .08 .06 -. 10 -. 01

5/2 .99 .02 -. 05 -. 03 -. 02
13/2 .98 -. 17

82 -- 123 205 2.17 0.38 1/2 .99 .02 .03

3/2 .99 .05 .07 -. 09 -. 05

5/2 .99 .01 -. 08 -. 03 .01
7/2 -. 03 .00 .99 -. 01

9/2 .04 .00 .99

13/2 .99 -. 13

82 -- 125 207 2.35 0.00 1/2 .99 .00 .00
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Table A6 29!S Z :- 39 34 -N S 50 G - 24/A

The single particle proton levels are (dj in Mey)

f7/2 f5/2 P3/2 P1/2 g9/2

-4.15 .87 -. 08 2.18 2.95 Z = 30 N = 34

-4.60 -. 60 .00 1.80 2.80 Z= 40 N = 50 Ao = 90

A special shift A • 7/2 = A F- 5/2 = -0.11 (N-40) is included so

that l 0
7/ 2 (A0 ) -3.50 and 5/2 (A0)= +0.50.

For Cu the f level was not included and 0 increased to 26/A.
7/2

Isotope A X A J Co Ci C' C'C
joo 7/212 5/212 3/212 1/212

29 Cu 34 63 -0.08 0.00 3/2 .85 * -. 20 .33 .28

29 - 36 65 -0.08 0.00 3/2 .84 * -. 21 .32 .30

31 GA 36 67 -0.40 1.47 3/2 .79 .21 -. 18 .19 .40

31 -- 38 69 -0.38 1.42 3/2 .74 .21 -. 18 .20 .44

33 As 40 73 0.20 1.52 3/2 .71 .35 -. 05 -. 27 .37

33 -- 42 75 0.09 1.45 3/2 .67 .32 -. 04 -. 19 .44

33 -- 44 77 -0.02 1.38 3/2 .74 .27 -. 04 -. 07 .44

35 BR 42 77 0.59 1.48 3/2 .66 .35 .10 -. 51 .15

35 -- 44 79 0.46 1.39 3/2 .77 .28 .13 -.44 .19

35 -- 46 81 0.33 1.30 3/2 .85 .23 .14 -. 33 .20

35 -48 83 0.20 1.20 3/2 .92 .19 .12 -. 19 .19
37 RB4 8 85 0.77 1.04 3/2 .88 .17 .17 -. 38 .05

5/2 .85 .06 -. 45 -. 22 -. 01

37 -- 50 87 0.68 0.93 3/2 .92 .16 .14 -. 30 .06

5/2 .89 .06 -.40 -. 19 -.01

39 Y 50 89 1.47 0.95 1/2 .99 .11 .12



108

STable A7 37!S Z S- /.9 5U f- N 1E 70 G = 26/A

" ~The single particle proton levels are ( j in Mev)

f 5/2 P3/2 PI/2 89/2

0.00 0.60 1.80 3.4*0 AO = 90

-'. 10 0.58 1.60 2.30 A = 115

A special shift E 9/2 = -. 055 (N-50) is included.

Isoop 5 1 o 2 3Z212 12 9/212

37 RB 50 87 1.35 0.96 3/2 .97 .12 -. 21 .03

39 Y 50 89 1.84* 0.86 1/2 .99 .09 .09

4.1 NB 50 91 2.54 0.88 1/2 .93 .13 .15
9/2 .98 .17

/.1 -- 52 93 2.4.6 0.88 1/2 .88 .29 .34*
9/2 .84* .50

4*1 -- 5/* 95 2.37 0.88 1/2 .85 .32 .37

9/2 .81 .55

4.3 TC 52 9.5 2.94* 0.C,8 9/2 .96 .28

4.3 - 54* 97 2.83 0.97 9/2 .93 .37

4.3 - 56 99 2.71 o.97 9/2 .90, .4.2

4.3 -- 58 101 2.60 o.96 9/2 .81 .`55

4*5 RH 56 101 3.0`5 0.91 1/2 .76 .37 .4.3

9/2 .99 -. 17

4*5 -- 58 103 2.93 0.90 1/2 .73 .38 ./.5

9/2 .98 -. 21

4.5 -- 60 10,5 2.82 0.89 1/2 .69 .4*0 .4.6

9/2 .9`5 -. 29

4.7 Ag 58 10.5 3.23 0.75 1/2 .77 .36 .4.3

4,7 -- 60 107 3.11 0.7`5 1/2 .76 .36 .44

4.6 -- 62 i09 2.99 0.74* 1/2 .7`5 .37 .44

4.7 -- 64 111 2.87 0.73 1/2 .73 .38 .4•5

4.7 -- 66 113 2.7.5 0.73 1/2 .70 .39 .4.6



Table A? (continued)
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Iaotope A J C3  C3  C3  C3  C3

S 5/212 3/212 12 9/212

49 IN 62 111 2.60 0.00 1/2 .87 .29 .35

9/2 .85 -. 49

49-- 64 113 2.48 0.00 1/2 .88 .29 .35

9/2 .86 -. 48

49 -- 66 115 2.36 0.00 1/2 .87 .29 .35

9/2 .86 -. 49

49 -- 68 117 2.24 0.00 1/2 .87 .29 .35

9/2 .86 -. 48

49-- 70 119 2.12 0.00 1/2 .89 .27 .33

9/2 .87 -. 47
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Table A8 51 -Z -61 64 !- N -! 88 G - 231A

The single particle proton levels are ( Ej in Hev):

g7/ 2  d5/ 2  h11/2  d3/ 2  e1/2

0.26 0.78 2.29 3.45 3.59 A - 115

0.00 0.80 2.10 2.60 2.95 A = 207
0

Isotope A A A j C" C3  C3  C3  Ci
3oo 7/212 5/212 3/212 1/212

51 SB 64 115 0.26 0.00 7/2 .87 .43 .12 -. 15

5/2 .81 -. 18 .47 .10 -. 19
51 -- 66 117 0.25 0.00 7/2 .86 .43 .12 -. 16

5/2 .80 -. 19 .48 .10 -. 19

51-- 68 119 0.24 0.00 7/2 .87 .43 .11 -. 15

5/2 .80 -. 19 .47 .10 -.19

51 -- 70 121 0.23 0.00 7/2 .88 .41 .11 -. 14
5/2 .82 -. 19 .46 .09 -. 17

51 -- 72 123 0.23 0.00 7/2 .89 .40 .10 -. 13

5/2 .83 -. 20 .45 .09 -. 16

51 - 74 125 0.22 0.00 7/2 .90 .38 .10 -. 12

5/2 .84 -. 20 .4 .08 -. 15

53 1 72 125 ,-0.15 0.69 7/2 .73 .52 .20 -. 22

5/2 .64 -. 18 .57 .11 -. 25

1/2 -. 37 .71 .29

53 -- 74 127 -0.15 0.68 7/2 .79 .49 .18 -. 20

5/2 .69 -. 18 .56 .10 -. 22

1/2 -. 37 .74 .27

53 - 76 129 -0.14 0.67 7/2 .85 .4 .14 -. 17

5/2 .73 -. 18 .54 .10 -. 19

53 -- 78 131 -0.14 0.65 7/2 .91 .36 .11 -.14

5/2 .80 -. 18 .49 .09 -. 17

55 CS 74 129 0.10 0.81 7/2 .74 .27 .37 -. 28

5/2 .64 -. 11 .56 .12 -. 29

1/2 e-.39 .71 .31

55 -- 76 131 0.10 0.79 7/2 .88 .22 .25 -. 23



Table A8 (continued) 111

Isotope A JC CJ C1  C1

joo 7/2 12 5/212 3/212 1/212

5/2 .71 -. 11 .55 .11 -. 25

1/2 -. 38 .74 .28

55 -- 78 133 0.10 0.77 7/2 .96 .14 .13 -. 16

5/2 .79 -. 11 .50 .10 -. 20

1/2 -. 38 .78 .24

55 -- 80 135 0.10 0.76 7/2 .99 .06 .05 -. 09

5/2 .93 -. 08 .32 .07 -. 12

55-- 82 137 0.10 0.74 7/2 .99 .01 .01 -. 01

5/2 .99 -. 01 .05 .01 -. 02

57 LA 80 137 0.35 0.82 7/2 .99 -. 13 -. 02 -. 08

5/2 .94 -. 03 .27 .08 -. 14

1/2 -. 40 .85 .18

57 -- 82 139 0.35 0.80 7/2 .99 -. 02 .00 -. 02

5/2 .99 -. 01 .04 .01 -. 03

59 PR 82 141 0.60 0.82 7/2 .99 -. 04 .00 -. 01

5/2 .99 .00 .02 .01 -. 02

59 -- 84 143 0.60 0.80 5/2 .90 .03 .27 .13 -. 25

7/2 .86 -. 47 -. 04 -. 10

61 PM 84 145 0,88 0.77 5/2 .96 -. 09 -. 08 .11 -. 19

7/2 .82 -. 52 -. 09 -. 07

61 -- 86 147 0.88 0.75 5/2 .90 .12 -. 10 .15 -. 30

7/2 .71 -. 63 -. 08 -. 08

61 -- 88 149 0.88 0.74 5/2 .64 .08 -. 01 .21 -. 50

7/2 .58 -. 68 -. 06 -. 09
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Table A 77 Z- 8.1 11l4! N - 126 G= 23/A

The single particle proton levels are the same as in Table A8

Isotop... A 4i Ji C i iJ0 2 / 2 3J 12 12
7/2 3/212 1/2 11/21:

77 IR 114 191 2.72 0.49 1/2 .72 .17 -. 63

3/2 .87 .22 .12 -. 08 .35

77 -- 116 193 2.71 0.48 1/2 .75 .16 -. 61

3/2 .89 .20 .11 -. 08 .33

79 Au 116 195 2.89 0.38 1/2 .95 .18 .22

3/2 .87 .14 .09 -. 42 -. 11

5/2 -. 15 .00 .0o4 .86 -. 29

11/2 .68 -. 65

79-- 118 197 2.88 0.37 1/2 .96 .16 .19

3/2 .89 .13 .09 -. 40 -. 10

5/2 -. 14 .00 .03 .86 -. 29

11/2 .70 -. 64

79-- 120 199 2.86 0.37 1/2 .97 .15 .16

3/2 .9o .12 .08 -. 38 -. 09

5/2 -. 13 .00 .03 .87 -. 30

11/2 .72 -. 62

81 T1 118 199 2.99 0.00 1/2 .99 .07 .12

3/2 .97 .06 .04 -. 16 -. 16

5/2 .11 .00 -. 02 -. 06 .98

1'1/2 .98 -. 22

81 -- 120 201 2.98 0.00 1/2 .99 .06 .12

3/2 .97 .05 .04 -. 16 -. 16

5/2 .09 .00 -. 01 -. 05 .98
11/2 .98 -. 21

81 -- 122 203 2.9,7 0.00 1/2 .99 .05 .09

3/2 .93 .04 .03 -. 13 -. 14

5/2 .06 .00 -. 01 -. 03 .99
11/2 .99 -. 17

81 - 124 205 2.96 0.00 1/2 .99 .02 .05

3/2 .99 .02 .01 -. 07 -. 09

5/2 .03 .00 .00 .01 .99

11/2 .99 -. 09

81 -- 126 207 2.95 0.00
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FIGURE CAPTIONS
2 •

Fig. 1. The coupling parameter: Kr > Xchosen to bring E2  into

agreement with the experimental data. The quantity < r2> is the

matrix element of r 2 in the most usual orbit of the shell under consid-

eration.

Figs. 2a, 2b. The experimental E2 + compared to ( computed with a

fixed X in each region. The semi-closed shell nuclei are indicated by

triangles. Isotopes of the same Z (indicated on the figure) are connected
- 5/3

by light lines. In each region X is given a dependence of A for which

we define )A X . The value of X used for each region is indicated

on the figure.

Fig. 3. Energy levels of odd-mass PB isotopes. The pairing and single

particle energy parameters are given in Appendix B; the long range force

is chosen to fit the even-even spectra. The experimental points are given

as open circles and the theoretical results as solid lines.

Fig.4. Energy levels of odd-mass Hg isotopes.

Fig. 5. Energy levels of odd-mass Os and Pt isotopes.

Fig. 6. Energy levels of odd-mass Tl isotopes.

Fig. 7. Energy levels of odd-mass Ir and Au isotopes.

Fig. 8. The effect of quadrupole interaction on states of odd-neutron

nuclei above the deformed region. The quasi-particlie energy levels in

the absence of the quadrupole interaction are given as solid lines while

the low-lying states in the presence of the quadrupole interaction are given

as dashed lines. The experimental ground state spins are included.

Fig. 9. Energy levels of odd-mass Sn isotopes.

Fig. 10. Energy levels of odd-mass Te isotopes.
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Fig. 11. Energy levels of odd-mass Xe isotopes.

Fig. 12. Energy levels of odd-mass Ba, Ce, and Nd isotopes.

Fig. 13. Energy levels of odd-mass Ce, Nd, and Sb isotopes.

Fig. 15. Energy levels of odd-mass SI isotopes.

Fig. 15. Energy levels of odd-mass I isotopes.

Fig. 16. Energy levels of odd-mass Cs isotopes.

Fig. 17. Energy levels of odd-mass La,. Pr, and Pm isotopes.

Fig. 18. The effect of quadrupole interaction on states of odd-proton

nuclei for 51: Z-S59, 64!5 N!-84. The notation is the same as in Fig. 8.

Fig. 19. The effect of quadrupole interaction on states of odd-neutron

nuclei for 50o-Z<- 60, 61- N'5 81. The notation is the same as in Fig. 8.

Fig. 20. Energy levels of odd-mass In isotopes.

Fig. 21. Energy levels of odd-mass Ag isotopes.

Fig. 22. Energy levels of odd-mass Tc and Rh isotopes.

Fig. 23. Energy levels of odd-mass Rb, Y, and Nb isotopes.

Fig. 24. Energy levels of odd-mass Cd isotopes.

Fig. 25. Energy levels of odd-mass Pd isotopes.

Fig. 26. Energy levels of odd-mass Mo and Ru isotopes.

Fig. 27. Energy levels of odd-mass Kr, Sr, and Zr isotopes.

Fig. 28. Energy levels of odd-mass Cu, Ga, and As isotopes.

Fig. 29. Energy levels of the odd-mass B, Rb, and Y isotopes.

Fig. 30. Energy levels of the odd-mass N, and Zn isotopes.

Fig. 31. Energy levels of the odd-mass Ge and Se isotopes.

Fig. 32. Energy levels of the odd-mass Kr, Sr, and Zr isotopes.

Fig. 33. The quantities Pp(Z,N) vs. 2Ep(Z). The curve E (Z) is 4p(Z,N)

the proton quasi-particle energy averaged over N. The points are the

experimental Pp(Z,N).

Fig. 34. The quantities PN(Z,N) vs. 2EN(N). The curve EN(N) is E(Z,N)
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the neutron quasi-particle energy averaged over Z. The points are the

experimental PN(Z,N).

Fig. 35. The quantities PNP(Z,N) vs. 2E, + 2EN. For the plot against Z,

the curve for Ep and E are averaged over N. The experimmental points

PNp(Z,N) are the same as in Fig. 36.

Fig. 36. The quantities PNp(Z,N) vs. 2EP + 2EN. For the plot against N,

the curve for Ep and E N is averaged over Z.

i2 5
Fig. 37. Reduction factors for M4 2 + - 7- odd-neutron transitions.

The theoretical results are given by the solid line, while the experimental

ratio of the transition probability to the single-particle value is given

as triangles or circles connected by dashed lines with the assumption of

a radius parameter of 1.0 and 1.1 fermi, respectively. The sequences

are labeled by the proton numbers.

Fig. 38. Reduction factors for M4 h - d2 odd-neutron transitions. The

notation is the same as in Fig. 37.

Fig. 39. Reduction factors for 14 fi " g2A odd-proton transitions. The
2 2

notation is the same as in Fig. 37.

Fig. 40. Reduction factors for I - g2 odd-neutron transitions. The
Oi 2

notation is the same as in Fig. 37.

Fig. 41. Allowed transitions involving a d 5/2 proton and a d 3/2

neutron, odd-mass and even-mass. The o and x points are the experi-

mental log ft values including the statistical factor for odd jumping and

even jumping transitions respectively for the odd-mass points and for

P -) N and N -+ P transitions respectively for the odd-odd -- even-even

transitions. The dashed O-curve and dot-dashed x-curve are the correspond-

ing theoretical curves log C//p2 where R is the appropriate reduction

factor UNUP and VPVN respectively for the odd-mass cases and VNUP and

UNVP respectively for the even-mass cases. An arrow indicates the value
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log C chosen to fit both the even-and odd-mass data.

Fig. 42. Allowed transitions involving a p i neutron and proton, odd-mass.

The points and curves are as described in Fig.41 odd-mass part.

Fig. 43. Allowed transitions involving a p 3/2 proton and a p 1/2 neutron,

odd-mass and even-mass. See caption of Fig.41 for details.

Fig. 44. Allowed transitions involving a g 9/2 proton and a g 7/2 neutron,

odd-mass and even-mass. See caption of Fig.41 for details.

Fig. 45. Unique transitions involving a p 1/2 proton and a d 5/2 neutron

and Unique transitions involving a g 7/2 proton and an h 11/2 neutron odd-

mass. For details see the caption of Fig.4L - odd-mass part.



Table I Magnetic moments of odd-proton nuclei. The isotope and
state are listed in columns 1 and 2, the ground state being starred
when known. Columns 3 and 4 list the quasi-particle (Schmidt)
moments and the quasi-particle moment corrected by higher seniority
configurations admixed by a 6 -function force respectively. Col-
umns 5, 6 , and 7 list the contributions from the zero, one, and two
phonon parts of the wave function. Columns 8 ard 9 list the theoret-
ical moments with a =o and g_=Z/A respectively. The last column
is the experimentalloments in huclear magnitons. The experimental

values were taken from a compilation kindly furnished by Dr. G. Fuller.

c Otheor.
Isotope State 9Pe 4qp go Pl 12 •=o gr=Z/A exp

29 Cu 3/2 3.79 1.33 0.96 -0.10 0.00 0.67 0.95

Cu63 3/2* 3.79 i.31 0.95 -0.11 0.00 0.67 0.84

Cu65 3/2* 3.79 1.27 0.90 -0.12 -0.01 0.60 0.78

Ga67 3/2 3.79 2.32 1.46 0.15 .07 1.47 1.68 1.90

Ga69 3/2* 3.79 2.27 1.25 0.17 .09 1.24 1.51 2.02

3As73 3/2 3.79 1.97 0.98 0.97 .10 1.89 2.05

As7 5  3/2 3.79 2.19 0.99 0.88 .14 1.77 2.01 1.439

As7 7  3/2* 3.79 2.21 1.20 0.55 .13 1.65 1.88

Br7 7  3/2 3.79 2.15 0.93 0.85 .20 1.86 1.98

Br7 9  3/2* 3.79 2.14 1.25 0.68 .11 1.93 2.05 2.106

Br81 3/2 3.79 2.18 1.59 0.49 .06 2.06 2.14 2.270.

Br8 3 3/2 3.79 2.27 1.94 0.27 .03 2.20 2.24

Rb81 3/2 3.79 2.10 1.15 0.35 0.10 1.47 1.61 2.05

5/2 0.86 1.32 0.75 0.68 0.09 1.30 1.51

Rb 8 3  3/2 3.79 2.10 1.45 0.28 0.04 1.68 1.78

5/2 0.86 1.33 0.91 0.50 0.04 1.31 1.45 1.42

Rb8 5  3/2 3.79 2.09 1.61 0.25 .02 1.82 1.89

5/2 0.86 1.35 0.97 0.44 .02 1.32 1.42 1.35

Rb87 3/2 3.79 2.21 1.87 0.20 .01 2.05 2.09 2.75



(2)
Table I (continued)

c gtheor"

Isotope State gap Aqp PO PtI, 2 heo gr.A v exp

5/2 0.86 1.32 1.04 0.35 .02 1.32 1.42

3 89 1/2 -0.26 -0.26 -0.26 0.00 .00 -0.26 -0.26 -0.137

9/2 6.79 6.14 5.25 0.54 .02 5.78 5.81

41 Nb91  1/2 -0.26 -0.26 -0.26 0.00 0.00 -0.26 -0.26

9/2 6.79 5.94 5.76 0.16 0.00 5.91 5.92

Nb93 1/2 -0.26 -0.26 -0.20 -0.01 -. 01 -0.24 -0.22

9/2 * 6.79 5.68 4.02 1.36 .16 5.46 5.54 6.17

Nb95  1/2 -0.26 -0.26 -0.19 -0.00 -. 01 -0.24 -0.20

9/2 6.79 5.65 3.69 1.57 .22 5.39 5.48

Tc97 9/2* 6.79 5.36 4.59 0.67 .04 5.29 5.30

Tc 9 9  9/2* 6.79 5.37 4.34 0.88 .06 5.24 5.28 5.60

To 10 1  9/2 6.79 5.33 3.50 1.47 .02 5.08 5.17

45Rh103 12 -0.26 -0.26 -0.14 0.03 -. 02 -0.18 -0.13 -0.0883

9/2 6.79 5.00 4.78 0.20 .00 4.98 4.99

Rh10 5  1/2 -0.26 -0.26 -0.13 0.04 -. 02 -0.16 -0.11

47 Ag-05 1/2* -o.26 -0.26 -o.16 O.O4 -. 01 -0.18 -0.13 +0.101

Ag1 0 7  1/2* -0.26 -0.26 -0.15 0.04 -. 02 -0.18 -0.13 -0.114

Ag10 9  1/2* -0.26 -0.26 -0.15 0.04 -. 02 -0.18 -0.13 -0.131

Ag111 1/2* -0.26 -0.26 -0.14 0.04 -. 02 -0.17 -0.11 -0.145

Ag1 1 3  1/2 -0.26 -0.26 -0.13 0.05 -. 02 -0.15 -0.10

4 9 In1 0 9  1/2 -0.26 -0.26 -0.20 0.00 0.00 -0.23 -0.20

9/2 6.79 6.01 3.60 1.15 0.12 4.80 4.90 5.53

In111  1/2 -0.26 -0.26 -0.20 0.00 0.00 0.23 -0.20

9/2 6.79 6.03 3.67 1.13 0.12 4.85 4.92 5.33



(3)

Table I (continued)

SIMtheor.
Isotope State Pisp 1Aqp PO P1 P2 gr-o gr-Z/A 4exp

In 1 1 3  1/2 -0.26 -0.26 -0.20 0.00 0.00 0.23 -0.20 -0.21

9/2 6.79 6.05 3.76 1.08 0.11 4.89 4.95 5.52

In 1 15  1/2 -0.26 -0.26 -0.20 0.00 0.00 -0.23 -0.20

9/2 6.79 6.09 3.75 1.11 0.11 4.91 4.98 5.53

In 1 17  1/2 -0.26 -0.26 -0.20 0.00 0.00 -0.24 -0.21

9/2 6.79 6.11 3.77 1.10 0.11 4.94 5.00

inI 1 9 1/2 -0.26 -0.26 -0.20 0.00 0.00 -0.24 -0.21

9/2 6.79 6.03 3.82 1.02 0.10 4.87 4.93

Sb 1 1 9  1/2 2.79 0.54 0.12 -0.01 .02 0.26 0.12

5/2" 4.79 2.60 1.68 0.49 .05 2.09 2.23

7/2 1.72 3.78 2.85 0.73 .07 3.55 3.65

Sb121 1/2 2.79 0.62 0.11 0.04 .02 0.31 0.16

5/2" 4.79 2.58 1.73 0.47 .05 2.11 2.24 3.36

7/2 1.72 3.80 2.96 0.67 .06 3.60 3.69

Sb123 1/2 2.79 0.60 0.10 0.07 .02 0.35 0.19

5/2 4.79 2.56 1.75 0.45 .05 2.13 2.25

7/2 1.72 3.83 3.03 0.64 .05 3.64 3.72 2.55

Sb 125 1/2 2.79 0.58 0.09 0.11 .02 0.38 0.22

5/2 4.79 2.56 1.79 0.43 .40 2.16 2.29

7/2 1.72 3.85 3.12 0.57 .44 3.68 3.75

I 125 1/2 2.79 1.59 0.22 0.08 .10 0.50 0.40

5/2* 4.79 3.81 1.46 0.89 .20 2.42 2.55 3.0

7/2 1.72 2.77 1.47 1.02 .25 2.50 2.73

I 127 1/2 2.79 1.56 0.21 0.15 .11 0.59 0.47



(4)

Table I (continued)

c Otheor.
Isotope State Asp Iqp A1o 2 ° g=Z/A vexp

5/2* 4.79 3.50 1.65 0.85 .09 2.42 2.60 2.809

7/2 1.72 2.79 1.72 0.86 .15 2.58 2.75

1 129 1/2 2.79 1.55 0.20 0.25 .11 0.71 0.57

5/2 4.79 3.50 1.92 0.77 .12 2.61 2.80

7/2* 1.72 2.81 2.02 0.65 .09 2.65 2.77 2.617

1 131 1/2 2.79 1.56 0.20 0.38 .11 0.86 0.69

5/2 4.79 3.51 2.27 0.63 .07 2.84 2.98

7/2 1.72 2.82 2.32 0.43 .03 2.72 2.79 2.738

1 133 1/2 2.79 1.57 0.20 0.50 .10 1.02 0.81

5/2 4.79 3.52 2.66 0.48 .05 3.09 3.18

7/2 1.72 2.83 2.62 0.20 .01 2.79 2.83 2.84

Cs129 I/2 2.79 1.73 0.26 0.07 .10 0.53 0.44 1.47

5/2 4.79 3.61 1.50 0.89 .20 2.26 2.58

7/2 1.72 2.52 1.39 1.04 .25 2.45 2.78

Cs1 3 1  1/2 2.79 1.73 0.25 0.18 .10 0.67 0.55

5/2 4.79 3.63 1.80 0.83 .15 2.52 2.78 3.52

7/2 1.72 2.53 1.96 0.54 .14 2.49 2.64

Cs1 3 3  1/2 2.79 1.73 0.25 0.33 .11 0.85 0.69

5/2 4.79 3.65 2.27 0.67 .08 2.86 3.03

7/2 1.72 2.53 2.33 0.20 .03 2.51 2.56 2.58

C31 3 5  1/2 2.79 1.76 0.23 0.70 .07 1.22 1.01

5/2 4.79 3.69 3.18 0.27 .01 3.40 3.46

7/2 1.72 2.53 2.49 0.04 .00 2.52 2.53 2.73

C01 3 7 1/2 2.79 1.80 0.03 1.42 .00 1.72 1.46



(5)

Table I (continued)

litheor.

Isotope State JA P C J Ao 2 gP=o •=Z/A Lexp

5/2 4.79 3.75 3.74 0.00 .00 3.74 3.74

7/2* 1.72 2.53 2.52 0.00 .00 2.52 2.52 2.84

La137 5/2 4.79 3.77 3.36 0.21 .01 3.52 3.51

7/2 1.72 2.28 2.22 0.05 .00 2.26 2.27

La139 5/2 4.79 3.84 3.83 0.01 .00 3.84 3.84-

7/2 * 1.72 2.26 2.25 0.00 .00 2.25 2.25 2.78

5 PrI•I 5/2* 4.79 4.02 4.02 0.00 .00 4.02 4.02 4.0

7/2 1.72 2.00 1.99 0.00 .00 2.00 2.00
Pr143 5/2 4.79 3.83 3.10 0.29 .05 3.32 3.44

7/2 1.72 2.18 1.61 0.47 .05 2.04 2.12

61 Pm14 5  5/2 4.79 3.62 3.35 0.17 .02 3.48 3.54

7/2 1.72 2.23 1.51 0.59 .07 2.07 2.17

Pm1 4 7  5/2 4.79 3.64 2.92 0.36 .08 3.21 3.36 (3.6)

7/2 * 1.72 2.21 1.11 0.83 .18 1.95 2.12 (3.0)

Pm1 4 9  5/2 4.79 3.65 1.51 0.75 .29 2.08 2.55

7/2 * 1.72 2.19 0.75 0.97 .35 1.83 2.06

77Ir191 3/2 0.12 2.02 0.77 0.23 .05 0.97 1.05 0.18

ir 1 93  3/2"* 0.12 1.02 0.82 0.20 .04 0.99 1.05 0.19

7 Au1 95 1/2 2.79 0.37 0.34 -0.08 -. 01 0.24 0.25

3/2* 0.12 0.80 0.61 0.30 .01 0.84 0.93

11/2 7.79 5.30 2.46 2.12 .49 4.95 5.07

Au197  1/2 2.79 0.33 0.31 -0.06 -. 01 0.24 0.25

3/2* 0.12 0.79 0.63 0.27 .01 0.84 0.92 0.145

11/2 7.79 5.29 2.61 2.03 .43 4.97 5.08



(6)

Table I (continued)

c "theor.
Isotope State Asp gqp  po 11 2 r°o &rZ/A exp

Au199 1/2 2.79 0.32 0.31 -0.04 .00 0.25 0.26

3/2* 0.12 0.78 0.64 0.24 .01 0.82 0.89 0.24

11/2 7.79 5.30 2.78 1.95 .38 5.00 5.10

81 T1199 1/2* 2.79 1.13 1.11 -0.02 .00 1.08 1.09 1.57

T1 2 0 1  1/2* 2.79 1.04 1.02 -0.01 .00 1.00 1.01 1.58

T12 0 3  1/2 2.79 1.00 0.99 -0.01 .00 0.97 0.98 1.61

Ti205 1/2 * 2.79 0.70 0.70 0.00 .00 0.70 0.70 1.63



Table II Magnetic moments of odd-neutron nuclei

See the caption of table I.

ctheor.
Isotope State Itp 2 o V1 0  e2 o 7A exp

28 Ni 59 3/2* -1.91 4).68 -0.40 0.54 0.11 -0.05 0.24

5/2 1.37 0.60 0.35 0.15 0.16 0.32 0.66

Ni 61 3/2* -1.91 -0.65 -0.51 0.20 0.05 -0.4 -0.25 +0.03

5/2 1.37 o.8o 0.64 0.15 0.09 0.69 0.88 t1.15

Ni 63 3/2* -1.91 -0.68 -0.55 -0.14 0.00 -0.80 -0.69

5/2 1.37 0.90 0.72 0.26 0.03 0.90 1.02

30 Zn 65 3/2 -1.91 -0.71 -0.45 -0.18 .00 -0.67 -0.62

5/2 1.37 0.97 0.64 0.23 .05 0.73- 0.92

Zn 67 3/2 -1.91 -0.67 -0.36 0.05 .00 -0.40 -0.30

5/2" 1.37 0.79 0.52 0.18 .05 0.52 0.75 0.'876

32 Ge 71 I/2 0.64 0.64 0.29 0.17 0.50 0.97 0.86

9/2 -1.91 -1.20 -0.46 -0.38 -0.07 -1.09 -0.90

Ge 73 1/2 0.64 0.64 0.29 0.17 0.57 0.92 1.00

9/2 -1.91 -1.03 -0.40 -0.30 -. 05 -0.93 -0.76 -0.879

Ge 75 1/2 0.64 0.64 0.29 0.15 0.47 0.85 0.92

Se 75 5/2*" 1.37 0M86 0.12 0.36 .28 0.01 0.77
1Se 77 /2* 0.64 0.64 0.31 0.15 .53 0.92 0.99 0.534

Se 79 1/2 0.64 0.64 0.36 0.12 .40 0.83 0.88

Se 81 1/2 0.64 0.64 0.42 0.08 .28 0.75 0.79

36 Kr 79 1/2 0.64 0.64 0.30 0.16 .56 0.94 1.02

Kr 81 1/2 0.64 0.64 0.39 0.11 .34 0.79 0.84

Kr83 9/2* -. 91 -0.39 -0.27 -0.03 .01 -0.38 -0.30 -0.970



(2)

Table II (continued)

c ltheor"

Isotope State tsp 11qp 1 0 P I P2 ° Z/A "'exp

Kr 85 9/2* -1.91 -0.35 -0.16 -0.03 .02 -0.32 -0.17 ±1.OO 5

Kr 87 5/2 -1.91 -0.92 -0.64 0.04 .05 -0.71 -0.55

38 Sr 87 9/2 -1.91 -0.43 -0.38 -0.02 .00 -0.43 -0.40 -1.093

Sr 89 5/2" -1.91 -0.83 -0.82 0.01 .00 -0.82 -0.81

40 Zr 91 5/2" -1.91 -0.91 -0.87 0.02 .00 -0.88 -0.85 -1.303

Zr 93 5/2" -1.91 -0.44 -0.40 0.05 .02 -0.40 -0.32

Mo 95 5/2 -1.91 -0.44 -0.38 0.07 .03 -0.37 -0.28 -0.914

Mo 97 5/2 -1.91 -0.16 -0.14 -0.01 .02 -0.22 -0.13 -0.933

Ru 97 5/2 -1.91 -0.44 -0.37 0.08 .04 -0.36 -0.25

99Ru 5/2 -1.91 -0.14 -0.11 0.01 .06 -0.20 -0.04 -0.63

Ru10 1  5/2* -1.91 -0.09 -0.06 -0.03 .06 -0.20 -0.03 -0.69

46 Pd 10 3  5/2 -1.91 -0.07 -0.05 -0.01 .03 -0.16 -0.04

Pdl 0 5  5/2* -1.91 -0.10 -0.06 0.05 .02 -0.19 0.01 -0.57

Pd1 0 7  5/2 -1.91 -0.14 -0.05 0.16 .00 -0.31 0.10

Pd109 5/2 -1.91 -0.18 -0.05 0.18 -. 01 -0.38 0.12

Pd111 5/2 -1.91 -0.22 -0.05 0.18 .02 -0.37 0.14

48 Cd107 1/2 -1.91 -0.40 -0.27 -0.01 .05 -0.38 -0.22

3/2 1.15 0.57 0.16 0.13 .08 0.29 0.37

5/2 -1.91 -0.13 -0.09 0.00 .02 -0.20 -0.07 -0.617

11/2 -1.91 -0.21 0.22 0.30 .11 0.48 0.62
Cd109 5/2* -1.91 -0.17 -0.10 0.07 .01 -0.26 -0.03 -0.829

Cd1 1 1  1/2* -1.91 -0.48 -0.34 -0.31 .02 -0.64 -0.63 -0.595

5/2 -1.91 -0.23 -0.10 0.13 .00 -0.34 0.02 (0.73)

Cd113 1/2* -1.91 -0.50 -0.34 -0.33 .01 -0.63 --0.66 -0.622



(3)

Table II (continued)

e S etheor.

Isotope State Pap vqp 40 JA $2 g=°o &ýZ/A "exp

3/2 1.15 0.60 0.23 0.37 .12 0.38 0.72

5/2 -1.91 -0.26 -O.09 0.17 .00 -0.38 0.08

11/2 -1.91 -0.39 0.17 0.19 .06 0.31 0.42

Cd115 // -1.91 -0.49 -0.33 -0.26 -. 01 -0.51 -0.59

50 Sn111 7/2 1.49 0.72 0.69 0.07 0.01 0.74 0.78

Sn 1 13 1/2 -1.91 -0.81 -0.69 -0.18 0.01 -0.88 -0.86

7/2 1.49 0.80 0.75 0.08 0.00 0.83 0.80

Sn115 1/2" -1.91 -0.79 -0.68 -0.22 0.00 -0.89 -0.91 -0.918

Sn117 1/2" -1.91 -0.82 -0.69 -0.18 0.00 -0.84 -0.87 -1 .000

3/2 1.15 0.73 0.61 0.15 0.01 0.68 0.77

11/2 -1.91 -0.76 -0.63 -0.08 0.00 -0.75 -0.71

Sn119 1/2 -1.91 -0.79 -0.66 -0.07 -0.01 -0.69 -0.74 -1.046

3/2 1.15 0.73 0.66 0.10 0.00 0.72 0.76 (0.7)

11/2 -1.91 -0.68 -0.63 -0.03 0.00 -0.67 -0.66

Sn121 1/2 -1.91 -0.70 -0.58 0.07 -o.011 -0.49 -0.52

3/2 1.15 0.71 0.66 0.07 0.00 0.71 0.73

11/2 -1.91 -0.54 -0.53 0.00 0.00 -0.54 -.0.54

Sn123 1/2 -1.91 -0.63 -0.48 0.22 -0.01 -0.27 -0.27

3/2 1.15 0.71 0.65 0.05 0.00 0.69 0.70

11/2 -1.91 -0.40 -0.40 0.00 0.00 -0.40 -0.-40

Sn 1 2 5  1/2 -1.91 -0.58 -0.41 0.31 0.00 -0.15 -0.09

3/2 1.15 0.71 0.65 0.01 0.00 0.66 0.66

11/2 -1.91 -0.26 -0.25 0.00 0.00 0.26 -0.26

5T121 1/2 -1.91 -0.58 -0.35 -0.10 -.04 -0.39 -0.49



(4)

Table II (continued)

c 4theor.

Isotope State A sp vop IAo 91 2 8r ho Er=. A I exp

3/2 1.15 0.65 0.42 0.36 .02 0.66 0.80

11/2 -1.91 -0.49 -0.32 -0.08 .00 -0.47 -0.39

To123  1/2 -1.91 -0.51 -0.31 0.19 -. 04 -0.09 -0.16 -0.736

Te12 5  1/2 -1.91 -0.47 -0.26 0.43 -. 02 0.13 0.16 -0.887

3/2 1.15 0.64 0.48 0.15 .01 0.56 0.64

11/2 -1.91 -0.22 -0.22 0.00 .00 -0.22 -0.22

To12 7  3/2* 1.15 0.64 0.51 0.04 .01 0.52 0.57

11/2 -1.91 -0.11 -0.10 0.01 .00 -0.11 -0.09

Te129 3/2 1 .15 0.66 0.52 0.01 .02 0.50 0.56

11/2 -1.91 -0.05 -0.04 0.03 .00 -0.05 -0.01

Xe127 1/2 -1.91 -0.54 -0.24 0.47 -. 03 0.18 0.19

3/2 1.15 0.66 0.30 0.30 .07 0.42 0.67

11/2 -1.91 -0.32 -0.32 0.00 .00 -0.32 -0.32

Xe129 1/2 -1.91 -0.51 -0.20 0.58 .01 0.28 0.40 -0.777

Xe' 3 1  3/2" 1.15 0.68 0.44 0.05 .05 0.42 0.53 0.691

11/2 -1.91 -0.15 -0.10 0.15 .01 -0.15 -0.07

Xe1 3 3  3/2" 1.15 0.71 0.50 0.04 .03 0.48 0.57

11/2 -1.91 -0.18 -0.12 0.01 .01 -0.17 -0.10

56 Ba1 3 1  1/2 -1.91 -0.58 -0.21 0.58 .01 0.27 0.38

3/2 1.15 0.69 0.32 0.17 .09 0.36 0.58

Ba13 3  1/2 -1.91 -0.60 -0.19 0.57 .04 0.23 0.43

3/2 1.15 0.70 0.40 0.08 .07 0.39 0.54

11/2 -1.91 -0.26 -0.15 -0.02 .01 -0.25 -0.16

Ba1 3 5  3/2" 1.15 0.73 0.55 0.03 .02 0.53 0.61 0.837

Ba13 7 1/2 -1.91 -0.84 -0.52 0.13 .00 -0.54 -0.39



(5)

Table II (continued)

C
Isotope State lsp. qp £o P'2 ° gZ/A ILexp

3/2" 1.15 0.78 0.77 0.00 .00 0.77 0.77 0.936

11/2 -1.91 -0.37 -0.37 0.00 .00 -0.37 -0.37

58 Ce139 3/2 1.15 0.79 0.79 0.00 .00 0.79 0.79 tO.8

11/2 -1.91 -0.48 -0.48 0.00 .00 -0.48 -0.48

6c Nd14 1  3/2 1.15 0.78 0.78 0.00 .00 0.78 0.78

Nd:I3 7/2" -1.91 -1.04 -1.04 0.00 .00 -1.04 -1.04 -1.0

Nd14 5  7/2 -1 .91 -1.07 -0.46 -0.11 .05 -0.75 -0.52 -0.7

Nd14 7  5/2* 1.37 0.96 0.13 -0.18 .09 0.04 0.03 +o.6

62 Sm147 7/2* -1.91 -1.05 -0.51 -0.09 .05 -0.76 -0.55 -0.8

Sm14 9  7/2* -1.91 -1.07 -0.40 -0.12 .09 -0.72 -0.44 -0.6

76 08189 3/2* -1.91 0.15 0.03 0.36 .33 0.21 0.73 0.657

08191 3/2 -1.91 0.36 0.10 -0.06 .33 0.03 0.38

78 Pt09 3  1/2* 0.64 0.64 0.21 0.00 .09 0.31 0.30

Pt 1 95  1/2* 0.64 0.64 0.24 -0.03 .09 0.14 0.13 0.606

80 Hg1 95 1/2* 0.64 0.64 0.27 -0.02 .03 0.29 0.29 0.535

13/2 -1.91 0.63 0.43 0.21 .03 0.61 0.67 -1 .039

Hg1 97 1/2* 0.64 0.64 0.31 -0.05 -.04 0.26 0.22 0.527

13/2 -1.91 0.65 0.40 0.25 .05 0.62 0.69 -1.04

Hg1 99 1/2* 0.64 0.64 0.38 -0.05 .00 0.39 0.32 0.530

Hg20 1  3/2* -1.91 0.95 0.69 O.Z3 .02 0.89 0.95 -0.357

8Pb207 1/2* 0.64 0.64 0.64 0.00 .00 0.64 0.64 0.590



Table III Gyromagnetic ratio for the phonon. Since there
are no experimental results for any of the nuclei studied,
only the results for the 50-82 shell are presented.

Isotope gPh Isotope -Ph

1Sn 12 Ba130

50 62 56 74

Sn 11 4  -. 02 Ba132 .36

Sn116 -. 09 Ba 13 4  .41

Sn118 -.14 Ba136 .42

Sn 120 -. 15 Ba138 .52

Sn122 -. 14 Ce138
Sn58 80

Sn 124  -. 10 Ce 14 0  .95

Te 12 0  .2052 68 .2d 842  1.95
6 82

Te 22 .17

Te124 .16

Te126 .18

Te128 .21

Te130 .09
.. 126

Xe 12 .26
54 72

Xe12 8  .25

Xe 13 0  .28

Xe132 .33

Xe134 .38

Xe136 .49

The calculation includes only the particles in the outer

shells. The core contribution would shift the g values

toward 4.5



Table IV Quadrupole moments of Odd-Proton Nuclei. The isotope and state are
listed in the first two columns, the ground state being starred when known. The
next three columns contain the quasi-particle moment, and the moment corrected
by wave functions admixed by a 6 -force, for two effective charges. The phonon
contribution is in columns six, and the last two columns are the theoretical and
experimental moments in units of 10-24 cm2 . The experimental values were taken
from a compilation kindly furnished by Dr. Gladys Fuller.

Pý N Pý N P Ný P N
Isotope State e=2, eN=1 e=1, e0=0 e =2, eN=1 ea=2, eN=1

Q Q c Qc Q Q Q
q.p. q. p. q.P. ph theor exp

31 Ga 67 3/2* -. 03 -. 02 -. 04 - .17 -. 19 0.22

31 Ga 69 3/2 -. 03 -. 02 -.04 -.. 16 -. 18 0.20

31 Ga 71 3/2 -. 03 -. 02 -. 04 - .16 -. 18 0.12731

As 73 3/2" 0.02 .02 .09 .26 .33

As 75 3/2" 0.01 .02 .07 .18 .21 0.31

As 77 3/2* 0.002 .01 .04 .06 .08

Br 77 3/2 .06 .05 .17 .51 .58

Br 79 3/2 .05 .05 .16 .42 .51 .32

Br 81 3/2 .04 .04 .13 .30 .39 .27
83

Br 83 3/2" .03 .03 .09 .16 .2485*
Rb 85 5/2 .15 .11 .35 .40 .65 .28

3/2 .09 .08 .21 .26 .4

Rb,87 5/2 .18 .12 .25 .34 .54

3/2 .08 .07 .14 .20 .32 .14

y 89 9/2 -. 24 -. 15 -. 31 -. 28 -. 56

41 Nb 9 9/2* -. 19 -. 12 -. 28 -. 42 -. 62 -0.13

41 Nb 95 9/2 -. 19 -. 12 -. 31 -. 58 -. 78

To 97 9/2* -. 09 -. 05 -. 09 -. 53 -. 61

Tc 99 9/2" -. 08 -. 04 -. 09 -. 71 -. 77 +0.3

Te101  9/2* -. 08 -.04 -.10 -1.07 -1.13

4 Rh 1 0 1 9/2 .02 .03 .17 .32 .49



(2)

Table IV (continued)

e--2, eN1 e1= , eN--o eP-2, X=1 eP=2, eN1

Isotope State Q Qc Qq.p. q. p. q.p. p ph Qtheor exp

Rh1 0 3  9/2 .03 .03 .20 .46 .65

In 1 0 9  9/2* 0.25 .14 .62 .52 .97 1.20

4 9 In111 9/2 0.25 .14 .62 .53 .97 1.18

In1 1 3  9/2* 0.25 .14 .62 .54 .98 1.0

In1 1 5  9/2* 0.25 .14 .62 .56 1.01 1.1

In1 7 9/2 0.26 .14 .61 .55 1.01

49In 19 9/2* 0.26 .14 .64 .52 1.01

5Sb 19 5/21 -. 31 -. 12 -. o6 -. 41 -. 45 -. 2

7/2 -. 27 -. 10 +.02 -. 46 -. 46

51 Sb 12 11 5/2 -. 31 -. 12 -. 07 -. 39 -. 43 -. 26

7/2 -. 27 -. 10 -. 01 -. 43 -.44
Sb123 5/2 -. 31 -. 12 -. 07 -. 37 -. 42

51Sb 52 -3

7/2* -. 27 -.10 -.04 -. 40 -.43

51 Sb 1 2 5  5/2 -. 31 -. 12 -. 07 -. 34 -. 40

5/2* -. 28 -.11 -. 06 -. 36 -. 41
I 125 5/2* -. 25 -. 16 -. 60 -. 75 -1.00 -0.89

53

7/2 -. 17 -. 11 -. 45 -. 88 -1.05

I 127 5/2* -. 26 -. 17 -. 61 -. 70 -. 99 -0.79

7/2 -. 17 -. 11 -. 43 -. 81 -1.08

I 129 5/2 -. 26 -. 17 -. 59 -. 63 -. 96

"7/2 -. 17 -. 11 -. 39 -. 67 -. 95 -0.55

5 131 5/2 -. 26 -. 17 -. 54 -. 52 -. 87

7/2 * -. 17 -. 11 -. 35 -. 49 -. 76 -0.40

cs131 5/2* -. 21 -. 14 -. 48 -. 80 -1.04



(3)

Table IV (continued)

ep- 2 , eN=l eJýl, eN=0 eP=2, eN=1 eP=2 , eN- 1

Isotope State Q Qc QC Q Q
q.p. q.P. q. . ph theor exp

7/2 -. 04 -. 02 -. 04 -. 46 -.49

C31 3 3  5/2 -. 21 -. 14 -. 45 -. 68 -. 9655
7/2 -. 04 -. 02 -. 04 -. 27 -. 31 -0.003

Cs13 5  5/2 -. 22 -. 15 -. 41 -. 39 -. 74
7/2 -. 04 -. 02 -. 04 -. 08 -. 12 0.049

Cs137 5/2 -. 22 -. 15 -. 30 -. 03 -. 33
7/2 -. 03 -. 02 -. 03 -. 005 -. 03 0.05

57 Laa 5/2 -. 15 -. 10 -. 28 -. 38 -. 66

7/2 .08 .05 .19 .21 .38

La139 5/2 -. 16 -. 10 -. 21 -. 04 -. 25

7/2 .08 .05 .12 .02 .14 .23

59Pr141 5/2.* -. 08 -. 05 -. 09 -. 14* -. 10 -.07

7/2 .18 .13 .25 .03 .28

Pr 14 3  5/2" -. 08 -. 05 -. 13 -. 48 -. 58

7/2 .18 .13 .41 .92 1.22

61 Pm14 5  5/2 .03 .03 .08 .16 .23

7/2 .26 .18 .54 .96 1.33

61 pm1 7 5/2 .31 .17 .37 .21 .51

7/2 .27 .19 .70 1.27 1.62 +-0.95

61 pm149 5/2 .03 .03 .11 .04 .09

7/2 .27 .19 .80 1 55 1.82

Ir191 3/2* .01 .005 -. 05 .20 .16 1.0

Ir193 3/2" .01 .005 -. 05 .19 .15 1.0

7 9 Aul 95 3/2* .12 .09 .53 .68 1.o8



(4)

Table IV (continued)

eP=2 , eN- 1  Ie.O. eNO0  eP 2 , eN- 1  eP- 2 , eN=1

Isotope State Q QC QC Qxp
q.p. q.p. q.p. ph theor exp

7 9 Au 97 3/2 .13 .09 .57 .62 1.07 0.56
199

7 9 Au199 3/2* .13 .09 .55 .55 1.00

T11 9 9  3/2 .26 .15 .54 .12 .62

81 Ti201  3/2 .26 .15 .57 .11 .65

Ti 2 0 3  3/2 .26 15 .53 .07 .58

T12 0 5 3/2 .26 .17 .o4 .03 .47



TABLE V

Quadrupole Mompnts of Odd-Neutron Nuclei

(See the caption of table IV).

P ,0!eOa- NL OP. N P Nl
p- 2,-. .N-1,eP-leO eP-2• e-i

Isotope State Q QCiq.p. Qq.p q.p Qph Qtheor Qexp

302n 65 3/2 0.02 .04 .09 .30 .35

Zn6 5  5/2 * 0.035 .05 .14 .50 .59

3oZn 6 7  3/2 .047 .04 .17 .38 .47

5/2 - .072 .05 .22 .55 .66 0.18

3Ge73 9/2 1 -. 076 -. 05 -. 21 -. 91 -. 99 -. 2

3e73 5/2 1 .10 .11 .42 .24 .30 1.1

3eso79 7/21 0.8

3 6Krs3 9/2 1 .063 .10 .31 .67 .89 0.22
36Kr 8 5  9/2 1 .12 .13 .41 .71 .89 0.30

3 8Sr87 9/2 1 .12 .05 .25 .31 .53
3,St89 5/2 1 -. 094 -. 06 -. 26 -. 054 -. 31

4 oZr91 5/2 -. 094 -. 05 -. 25 -. 079 -. 34

40Zr 9  5/2 1 -. 027 -. 01 -. 05 -. 12 -. 22

42Mo95 5/2 1 -. 029 -. 02 -. 07 -. 17 -. 28

"2)1097 5/2 1 +.038 .05 .16 +.29 +.36

4Au9 9  5/2 1 .032 .05 .16 .31 .37

R0u1 01 5/2 1 .073 .06 .26 .8o .82

46Pd'
05  5/2 0 .085 .06 .30 .76 .91

hsCd10 7  5/2 1 .078 .04 .24 .63 .79 .78

e8CdI 09  5/2 1 .095 .04 .29 .58 .75 .S0

4 8 Cd1 5/2 1 .11 .05 .31 .48 .62

52T 3 3/2 -. 03 -. 02, -. 12 .*33 -.42

11/2 -. 03 +,01 .03 -. 60 -. 63



(2)

TABLE V (continued)

Isotope State eP-2, oN-1 a-', eNO J-2, 0N PQ QO

"q.p. q.p Q.p p Sheor

52Te129 3/2 .03 .01 .07 .19 .25

11/2 .08 .14 .36 .61 .84

5 4Xe1 29  3/2 .007 -. 005 -. 003 .19 .19

11/2 .06 .10 .35 1.1 1.3

54Xe1 3 1  3/2 j .03 .08 .32 .37 -. 12

11/2 .10 .13 .46 .99 1.29

5 4Xe1.3 3/2 j .06 .04 .18 .31 .44

11/2 .15 .15 .56 .78 1.16

56Ba135 3/2 0 .06 .05 .19 .33 .47
11/2 .15 .16 .56 .84 1.25

16Ba37 3/2 j .06 .08 .26 .01 .26

11/2 .22 .1e .63 .06 .68

5eCe139 3/2 ' .06 .08 .25 .03 .28

11/2 .22 .15 .57 .12 .69

5SCeA" 7/2 1 -. 23 -. 17 -. 49 -. 03 -. 5-4

6 0 Ndlk' 3/2 j .06 .10 .29 .02 .31

11/2 .22 .16 .59 .07 .66

60Nd15 7/2 j -. 23 -. 13 -,.53 -. 03 -. 56 1 1.0
5/2 -. 19 -. 11 -. 45 0.0 .005

6 0Ndl 3  7/2 j -. 20 -. 12 -. 52 -. 94 -1.06
5/2 -. 19 -. 11 -. 49 -. 15 -. 20

60N147 7/2 -. 17 -. 11 -. 49 -1.08 -1.23
5/2 1 -. 19 -. 31 -. 52 -. 31 -. 38

147 7/2 . -. 20 -. 12 -. 52 -. 94 -1.19 < .7
62S"m1 49  7/2 j -,18 -. 11 -. 50 -1.10 -1.29 - .7

760819 3/2 f -. 03 -. 02 -. 10 -. 34 -. 36 +.6

760S191 3/2 -. 001 -.005 -. 004 .05 .05



(3)
TABLE V (continued)

Isotope State eF"'29 0n 1  J4,1 eN 0  eP..2 e*l

Qq.p. Qq p Qq.p %ph Qtheor Qexp

78 PJ93 312 -. 002 -. 01 -. 012 .01 .01
5/2 -. 09 -. 06 -. 29 -.94 -1.09

78pt,195 3/2 .035 .02, .14 .54 .64

5/2 -. 055 -. 03 -. 14 -. 72 -. 82

78 197 3/2 +.073 .04 .29 .64 .85

5/2 -. 001 .02 .05 .02 .05

Sog 197 3/2 .03 .00 .13 .26 .37

13/2 .24 .04 .59 1.18 1.55 1.53

80g199 3/2 .07 .01 .28 0.46 0.68

13/2 .26 .03 .61 1.19 1.53

*201 3 / .01 .37 .0 .71 .50

13/2 .28 .03 .59 1.08 1.43



TABLE VI

B(E2) Values for ground state transitions in even-even nuclei.

The column labeled B(E 2 )THEOR lists the calculated B(E2) 0 +." 2+ values using

the same parameters used to calculate the energies in Figs. 2a, b. In the few

cases for which the calculated energy (of Fig 2) is far below the experimental

value, the B(E2) is listed in parenthesis for a lower I chosen to fit the

energy. The experimental values are listed in units of •2 x 10-4d cm4, and

compared with the single particle value of 3 x 10-5 e 2 x 10"48 A4/3 cm4 .

ISOTOPE B(E2)TMOR B(E)EX, I S.P. SOURCE

28Ni58 .017 .072 11 a

Ni60 .051 .091 13 a

Ni62 .100 .083 12 a

Ni64 .092 .087 12

30Zn64 .264 .170 21 a

66
Zn .245 .145 18 a

Z-68 .164 .125 16 a

32Ge70 .458 .172 18 a

Ge72 .476 .230 24 a

Ge 74  .609 .317 33 a

Go76 .729 .263 28 a

Oe78 .451

,34 S 74  .696 .21 21

se76 (.919) .480 48 a

se78 (.770) .385 38 a

Beso (.594) .283 28 a

se82 .327 .213 21 a

36 X7 1.784 .51 51

KRS° (,812) .34 34

,R82 (.55o) .18 18

XR84L .333 .15 15



(2)

TABLE VI (continued)

ISOTOPE B(E2)THEU B(E2)EXP I S.P, Source

38SR .205

sR88 .143 .13 12 b

4P90 .141

Z 92 .080

ZR94  
.216 

7

42•o94 .166 .27 21

SM96 .360 .30 23

mo098 .683 .27 21

Mo100 .915 .61 47
44 Ru96 .279 .25 19

•98 .563 .48 37

Ru1 0 0  .947 .57 41
U102 (1.424) .73 52

46Pdl04 (1.006) .55 37

PdI06 (1.261) .65 44

Pd108  (1.603) .74 50

Pd" 0  (2.009) .86 58

.4Cd4706 .44 .47 31
cd108  .571 .54 35

cd110 .687 .50 33

Cdj 1 2  .758 .54 35

Cd 14  .799 .58 38

Cd'16  .809 .6o 40

112 .350 O18 11

SnU .381 .20 12

&P116 .-399 .21 12

a .•414 .e23 14

Sn 120 .416 .22 23



(3)

TABIE VL (continued)

ISOTOPE B(E2)TER B(E2)EXP X S.P. SURCE

srP2 .365 .25 15

Sn12 4  .273 .21 12

52Te 120 1.183 .55 29

Te1 22  1.307 .65 35

Te1 2 4  1.080 .39 21

Je16 .729 .53 28

Te128  .468 .41 22

To 1 3 0  .289 .34 18

54Xe 1 2 8  (1.654)

Xe1 30  1.174 .48 24

Xe1 3 2  .592 .32 16

Xe134 .344

Xe136  .198

56a132 (1.814) .73 36

"BI3a - .929

Ba136 .509

Ba138 .294 .30 14

58Ce138  .631

Ce140  .392 .36 17 b

C142 .828 .59 27

60dl42. 361 .34 15 a

Nd'" .908 .44 19 c

Nd 1462.101 .84 37



(4)

TABLE VI (continued)

ISOTOPE B(E2). B(. 2) EX X S.P. SOURCE

62SI'6 go.900

Sm1"8 2.189 .89 37

Sm' 50  (4.0) 1.32 56

64 148 .974

Gd150 1.872

7601 (U1s8) 2.80 85

os190 (9.3) 2.55 78
78194 (5.2) 1.94 59 d

Pt1 9 6  4.086 1.27 37 d

Pt198  3.060 1.35 39
So0196 1.250

Hg198 1.355 1.13 32

Hg 200 .982 .85 24

14202 .749 .59 17

H204 .461

82 Pb200 e337
pb202 .280

- Pb2 0 4  
.216 ..17 5

Pb206 .101 .13 4

a. P. H. Stelson and F. K. McGowan, Nuc. Phys. 12, 652 (1962)
b. S. Ofer and A. Schwaraschild, Phys. Rev. Letters 1 384 (1959)
c. 0. Nathan and V.I. Popov, Nuc. Phys. 21, 631 (19605.
d. F. K. McGowan and P. H. Stelson Phys. Rev. 122 1274 (1961)
e. 0. Nathan Nue. Phys. W, '332 (1962)

Other experimental data was obtained from a compilation kindly furnished
by Dr. Yasukama loehisawa.



TABLE VII

B(E2) 0 + -+ 2' Cross over Rate. The same single particle

estimate is used as in Table V1. Effective charges e* - 2,

N P N.N . 1, and aP - l" . . 0 used to compute B(E2)Thoor in

units of e2 x I0"O 8 cm.

Isotope B(E2)Theor B(E2)Theor B(E2)Ex- B(E2)EXP

stk- e- e sB(2. •2 n- P,

32G eO .0026 ,0016 .007 0.8

Ge7 2  .0048 .0035 .0017 0.2

Go 74 .0058 .0064 .022 3.

Ge7 6  .0042 .0115 .004 0.4

3eSe 7 4  0. .0023 .005 0.5

Se76 .0031 .0015 .010 1.

Se7 8  .0018 .0046 .010 1o

So8 0  .0016 .0030 .019 2.

Se8 2  .0011 .0101 .008 0.8

367 0. .0102
Kra° O° .0002
fr 8 2 O. .0008

Kr8 4  .0001 .0026

Kr86 .0005 .0019

86 .0008 .0007

Sr8 8  .0009 .0037

40'r90 .0006 .0024

Zr92 .0005 .0006

Zr9. .0008 .0008

Z.9 .0022 .0070

4290 .0005 .0006 .005 0.5

096 .0009 .000 .0o 0.9



(2)
TABLE VII (continued)

B(E2 )Theor B (2)Theor B(E2) xP B(E2)p

Ieotop P-l, e*.O .P=2, .s-l B(Z2) S.P.

mo9 8  .0015 .0040 .014 l.

M100 .0048 .0191 .013 1.
" RU98 0001 o0001 .005 0.4

Ru1 0 0  .0003 .0002 .015 1.
R102 .0005 0014 .017 1.

Ru04 .0010 .0040 .010 0.8

4  06 Pd .0007 .0034 .014 1.

Pd108 .0010 ,0041 .007 0.5

Pd1 1 0  .0012 .0039 .010 0.6

6Cd 110 .0019 .0071 .020 1.

Cd1 1 2  .0022 .0077 .010 0.6
114 .0025 .0067 .007 0.4

316 .0026 .0051 .0o1 0.7

5S 1 1 4  0. .0001

Sn16 0o .0012

Sn8 0. °0022

Sn 1 2 0  0. .0019

Sn 1 2 2  0. .0011

Sn124 0. .0004

5202. .0045 .019 1.

T0124 O. .0026 .016 1.

Te126 0. .0010 ,005 0.3

To 1 2 8  0. °0002 .012 0.7
To 1 3 0 0. .0001 .011 0.6



(3)

TABLE VII (continued)

B(E2)Theor B(E2) °o B(E2)F B(E2)E q

Isotope •- 1, e*-O eP-2, en-". B(E2) SOP.

54Xe1 2 8  .0006 .0002

Xe1 30  .0004 .0008

Xe132  .0002 .0011

Xe1 3 4  .0001 .0007

56Ba130 .0043 .127
B32 .0025 .0072

B134 .0om6 .0068

Ba136 .0035 .0017

58Coe
2 8  .0015 .0073

Ce14 0  0. 0001

Co01 2 .0049 .0244

608d .0039 .0192

Nd14 6  .0080 .0470

Nd1•4 8  .0164 .106

Nd° 50  .o767 .512
62ý16 .0019 .0104

SM11 .0029 .0203

S150 .0073 .0577

Sm152  -054 9437

760s186 .0136 .0o56
Ogle .0107 .0702 .20 6.

o8190 .0074 .0480 .18 5.

On192 .0053 .0325 .21 6.

78p192 -.0004 .0003

Pt 1 94  .0003 .0003 .009 0.3

Pt196 .0002 .0004



(4)

TABLE VII (continued)

B(E2)Theor B(E2)Theor B(E2) EXP B(.2)EXP

Isotope sP-1, en'o *P-2, en-1 B(E2) S.Po

Pt,198 .0001 .0007

Wft 19 6  .000 .o0155

14198 .0043 .0160

Hg20° .0046 .0206

Hg22 .0220140
14204 .0019 .016

The experimental results were obtained from a compilation kindly

furnished by Dr. Yasukaza Yoshizawa.
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